Математика ЕГЭ
Русский язык ЕГЭ
Математика 5-7
Математика ОГЭ
Информатика
Физика
Обществознание
Кликните, чтобы открыть меню

10. Графики функций

1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения

Квадратичная функция (страница 2)

Задание 8 #5194

На одном из рисунков изображен график функции \(y=-x^2+3x+3\). Укажите номер этого рисунка.

Коэффициент перед \(x^2\) в уравнении параболы отрицательный, следовательно, ветви параболы направлены вниз. Значит, выбираем между 3 и 4. Парабола 3 имеет отрицательную абсциссу вершины, а парабола 4 – положительную. В данном уравнении абсцисса вершины равна \(x_0=\frac{-3}{2\cdot (-1)}>0\). Следовательно, ответ 4.

Ответ: 4

Задание 9 #5195

На одном из рисунков изображен график функции \(y=-2x^2+12x-16\). Укажите номер этого рисунка.

Коэффициент перед \(x^2\) в уравнении параболы отрицательный, следовательно, ветви параболы направлены вниз. Значит, выбираем между 1 и 4. Парабола 4 имеет отрицательную абсциссу вершины, а парабола 1 – положительную. В данном уравнении абсцисса вершины равна \(x_0=\frac{-12}{2\cdot (-2)}>0\). Следовательно, ответ 1.

Ответ: 1

Задание 10 #5196

Установите соответствие между графиками функций и формулами, которые их задают.


 

ФОРМУЛЫ:

 

1) \(y=-x^2-6x-6\qquad \) 2) \(y=x^2+6x+6\qquad \) 3) \(y=x^2-6x+6\)  

В таблице под каждой буквой укажите соответствующий номер.  

Ответ: \(\begin{array}{|c|c|c|} \hline \text{А} & \text{Б} & \text{В} \\ \hline && \\ \hline \end{array}\)

Если ветви параболы направлены вверх – то коэффициент перед \(\,x^2\) положительный, вниз – отрицательный. Парабола Б – единственная, ветви которой направлены вниз, следовательно, ей соответствует формула 1.

У параболы А абсцисса вершины положительная, у параболы В – отрицательная. Так как из формулы \(y=ax^2+bx+c\) абсцисса вершины ищется как \(x_0=\frac{-b}{2a}\), то А – 3, В – 2.

 

Ответ: \(\begin{array}{|c|c|c|} \hline \text{А} & \text{Б} & \text{В} \\ \hline 3&1&2 \\ \hline \end{array}\)

 

В ответ запишем 312.

Ответ: 312

Задание 11 #5197

Установите соответствие между графиками функций и формулами, которые их задают.


 

ФОРМУЛЫ:

 

1) \(y=-x^2-7x-11\qquad \) 2) \(y=x^2+7x+11\qquad \) 3) \(y=x^2-7x+11\)  

В таблице под каждой буквой укажите соответствующий номер.  

Ответ: \(\begin{array}{|c|c|c|} \hline \text{А} & \text{Б} & \text{В} \\ \hline && \\ \hline \end{array}\)

Если ветви параболы направлены вверх – то коэффициент перед \(\,x^2\) положительный, вниз – отрицательный. Парабола А – единственная, ветви которой направлены вниз, следовательно, ей соответствует формула 1.

У параболы Б абсцисса вершины отрицательная, у параболы В – положительная. Так как из формулы \(y=ax^2+bx+c\) абсцисса вершины ищется как \(x_0=\frac{-b}{2a}\), то Б – 2, В – 3.

 

Ответ: \(\begin{array}{|c|c|c|} \hline \text{А} & \text{Б} & \text{В} \\ \hline 1&2&3 \\ \hline \end{array}\)

 

В ответ запишем 123.

Ответ: 123

Задание 12 #5198

На рисунке изображен график функции \(y=ax^2+bx+c\).


 

Каковы знаки коэффициентов \(a\) и \(c\)?

 

1) \(a<0, c>0\qquad \) 2) \(a<0, c<0\qquad \) 3) \(a>0, c<0\qquad \) 4) \(a>0, c>0\)

Так как ветви параболы направлены вверх, то \(a>0\). Следовательно, либо 3, либо 4. Коэффициент \(c\) отвечает за ординату точки пересечения параболы с осью \(Oy\) (то есть любая парабола вида \(y=ax^2+bx+c\) проходит через точку \(A(0;c)\)). (Действительно, если подставить в \(y=ax^2+bx+c\) вместо \(x=0\), то получим \(y=0+0+c=c\).)



Из рисунка видно, что парабола пересекает ось \(Oy\) на положительной части, то есть \(c>0\). Значит, ответ 4.

Ответ: 4

Задание 13 #5199

На рисунке изображен график функции \(y=ax^2+bx+c\).


 

Каковы знаки коэффициентов \(a\) и \(c\)?

 

1) \(a<0, c>0\qquad \) 2) \(a<0, c<0\qquad \) 3) \(a>0, c<0\qquad \) 4) \(a>0, c>0\)

Так как ветви параболы направлены вниз, то \(a<0\). Следовательно, либо 1, либо 2. Коэффициент \(c\) отвечает за ординату точки пересечения параболы с осью \(Oy\) (то есть любая парабола вида \(y=ax^2+bx+c\) проходит через точку \(A(0;c)\)). (Действительно, если подставить в \(y=ax^2+bx+c\) вместо \(x=0\), то получим \(y=0+0+c=c\).)



Из рисунка видно, что парабола пересекает ось \(Oy\) на отрицательной части, то есть \(c<0\). Значит, ответ 2.

Ответ: 2

Задание 14 #5200

Дана функция \(y=ax^2+bx+c\). На каком из рисунков изображен график этой функции, если известно, что \(a>0, c>0\)?

Так как \(a>0\), то ветви параболы направлены вверх. Следовательно, либо 2, либо 3. Коэффициент \(c\) отвечает за ординату точки пересечения параболы с осью \(Oy\) (то есть любая парабола вида \(y=ax^2+bx+c\) проходит через точку \(A(0;c)\)). (Действительно, если подставить в \(y=ax^2+bx+c\) вместо \(x=0\), то получим \(y=0+0+c=c\).)
Так как \(c>0\), то парабола должна пересекать \(Oy\) на положительной части. Следовательно, это парабола 3.

Ответ: 3