Математика ЕГЭ
Русский язык ЕГЭ
Математика 5-7
Математика ОГЭ
Информатика
Физика
Обществознание
Темы отсутствуют
Кликните, чтобы открыть меню

16. Многоугольники. Базовые свойства

1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения

Параллелограмм и ромб (страница 3)

Задание 15 #5880

Биссектриса тупого угла параллелограмма делит противоположную сторону в отношении \(4:3\), считая от вершины острого угла. Найдите большую сторону параллелограмма, если его периметр равен \(88\).

Из условия задачи следует, что \(AK:KD=4:3\). Обозначим \(AK=4x\), \(KD=3x\). Следовательно, \(AD=7x\).
Так как в параллелограмме противоположные стороны параллельны, то \(\angle AKB=\angle KBC\) как накрест лежащие при \(AD\parallel BC\) и секущей \(BK\). Следовательно, \(\angle AKB=\angle ABK\), то есть \(\triangle ABK\) равнобедренный: \(AK=AB\). Отсюда \(AB=4x\).
Следовательно, периметр \(88=2(4x+7x)\) (так как противоположные стороны параллелограмма равны), следовательно, \(x=4\).
Значит, большая сторона параллелограмма равна \(7x=28\).

Ответ: 28

Задание 16 #5881

Точка пересечения биссектрис двух углов параллелограмма, прилежащих к одной стороне, принадлежит противоположной стороне. Меньшая сторона параллелограмма равна \(5\). Найдите его большую сторону.

\(AB=5\). Так как в параллелограмме противоположные стороны параллельны, то \(\angle AKB=\angle KBC\) как накрест лежащие при \(AD\parallel BC\) и секущей \(BK\). Следовательно, \(\angle AKB=\angle ABK\), то есть \(\triangle ABK\) равнобедренный: \(AK=AB\).
Аналогично \(DC=DK\).
Так как в параллелограмме противоположные стороны равны, то \(AK=AB=5=CD=DK\). Следовательно, \(AD=5+5=10\) – большая сторона.

Ответ: 10

Задание 17 #5882

Найдите высоту ромба, сторона которого равна \(\sqrt3\), а острый угол равен \(60^\circ\).

\(AD=\sqrt3\), \(\angle A=60^\circ\). Следовательно, \(\angle ADH=30^\circ\). Катет, лежащий против угла \(30^\circ\), равен половине гипотенузы, следовательно, \(AH=0,5AD=\frac{\sqrt3}2\). Тогда по теореме Пифагора: \[DH=\sqrt{(\sqrt3)^2-\left(\dfrac{\sqrt3}2\right)^2}=\dfrac32\]

Ответ: 1,5

Задание 18 #5883

Найдите большую диагональ ромба, сторона которого равна \(\sqrt3\), а острый угол равен \(60^\circ\).

\(\angle A=60^\circ\).
Проведем диагональ \(BD\). Пусть \(AC\cap BD=O\). Докажем, что \(AC\) – большая диагональ.



Так как в ромбе, как и в параллелограмме, диагонали точкой пересечения делятся пополам, то \(AO=0,5AC, DO=0,5BD\). Так как в ромбе диагонали являются биссектрисами углов и взаимно перпендикулярны, то \(\angle DAO=30^\circ\), \(\angle AOD=90^\circ\) и соответственно \(\angle ADO=60^\circ\). В треугольнике против большего угла лежит большая сторона, следовательно, \(AO>DO\), значит, \(AC\) – большая диагональ.

 

Катет, лежащий против угла \(30^\circ\), равен половине гипотенузы, следовательно, \(DO=0,5AD=\frac{\sqrt3}2\). Тогда по теореме Пифагора: \[AO=\sqrt{(\sqrt3)^2-\left(\dfrac{\sqrt3}2\right)^2}=\dfrac32 \quad\Rightarrow\quad AC=3\]

Ответ: 3

Задание 19 #5884

Диагонали ромба относятся как \(4:3\). Периметр ромба равен \(200\). Найдите высоту ромба.

Отрезок \(HK\) – высота ромба. Так как \(AB\parallel DC\) и \(HK\perp AB\), то \(HK\perp DC\).

 

Так как диагонали ромба делят его на 4 равных прямоугольных треугольника, а у равных треугольников высоты, опущенные к равным сторонам, равны, то \(OK=OH\).
Рассмотрим \(\triangle AOB\). Так как \(AC:BD=4:3\), то также \(AO:BO=4:3\). Пусть \(AO=4x, BO=3x\). Следовательно, \(AB=\sqrt{(4x)^2+(3x)^2}=5x\).
Так как у ромба все стороны равны, то его сторона равна \(200:4=50\), следовательно, \(5x=50\) и \(x=10\).
Высота прямоугольного треугольника \(AOB\), опущенная из вершины прямого угла \(O\), равна \(AO\cdot OB:AB\), следовательно, \[OK=\dfrac{4x\cdot 3x}{5x}=\dfrac{12}5x=24\quad\Rightarrow\quad HK=24\cdot 2= 48\]

Ответ: 48

Задание 20 #5885

В ромбе \(ABCD\) угол \(CDA\) равен \(78^\circ\). Найдите угол \(ACB\). Ответ дайте в градусах.

Так как в ромбе диагонали являются биссектрисами углов, то \(\angle ACB=\angle ACD\). Так как у ромба все стороны равны, то \(AD=DC\), следовательно, \(\angle CAD=\angle ACD=x\). Тогда \(x+x+\angle CDA=180^\circ\), откуда \[x=(180^\circ-78^\circ):2=51^\circ\]

Ответ: 51

Задание 21 #5886

В ромбе \(ABCD\) угол \(DAB\) равен \(148^\circ\). Найдите угол \(BDC\). Ответ дайте в градусах.

Так как в ромбе диагонали являются биссектрисами углов, то \(\angle BDC=\angle BDA\). Так как у ромба все стороны равны, то \(AD=AB\), следовательно, \(\angle BDA=\angle DBA=x\). Тогда \(x+x+\angle DAB=180^\circ\), откуда \[x=(180^\circ-148^\circ):2=16^\circ\]

Ответ: 16