Математика ЕГЭ
Русский язык ЕГЭ
Математика 5-7
Математика ОГЭ
Информатика
Физика
Обществознание
Темы отсутствуют
Кликните, чтобы открыть меню

16. Многоугольники. Базовые свойства

1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения

Равнобедренный треугольник (страница 3)

Задание 15 #5835

В треугольнике \(ABC\): \(\angle B = 90^{\circ}\), \(BD\) – биссектриса, \(AB = BC\), \(AC = 6\). Найдите \(BD\).

В равнобедренном треугольнике биссектриса, проведённая к основанию, является медианой и высотой, тогда \(DC = 0,5\cdot AC = 3\).

В равнобедренном треугольнике углы при основании равны, тогда \(\angle DCB = \angle BAC = 90^{\circ} : 2 = 45^{\circ}\).
Так как \(BD\) – биссектриса, то \(\angle DBC = =\frac12 \angle ABC=45^{\circ}\), то есть в треугольнике \(DBC\) углы при основании \(BC\) равны, тогда треугольник \(DBC\) – равнобедренный и \(BD = BC = 3\).

Ответ: 3

Задание 16 #5836

В треугольнике \(ABC\): \(\angle C = 90^{\circ}\), \(CD\) – высота, \(AC = BC\), \(AB = 33\). Найдите \(CD\).

В равнобедренном треугольнике высота, проведённая к основанию, является биссектрисой и медианой, тогда \(BD = 0,5\cdot AB = 16,5\).

В равнобедренном треугольнике углы при основании равны, тогда \(\angle DBC = \angle BAC = 90^{\circ} : 2 = 45^{\circ}\).
Так как \(CD\) – биссектриса, \(\angle DCB = 45^{\circ}\), то есть в треугольнике \(DCB\) углы при основании \(BC\) равны, тогда треугольник \(DCB\) – равнобедренный и \(CD = BD = 16,5\).

Ответ: 16,5

Задание 17 #5837

В треугольнике \(ABC\): \(AB = BC\), \(AD\) – высота, \(\angle CAD = 19^{\circ}\). Найдите \(\angle B\). Ответ дайте в градусах.

Так как \(AD\) – высота, то \(\angle CDA = 90^{\circ}\), тогда \(\angle CAD + \angle C = 90^{\circ}\). \(\angle CAD = 19^{\circ}\), тогда \(\angle C = 71^{\circ}\).

В равнобедренном треугольнике углы при основании равны, тогда \(\angle CAB = \angle C = 71^{\circ}\). Сумма углов треугольника равна \(180^{\circ}\), тогда \(\angle B = 180^{\circ} - \angle C - \angle CAB = 180^{\circ} - 71^{\circ} - 71^{\circ} = 38^{\circ}\).

Ответ: 38

Задание 18 #5838

В треугольнике \(ABC\): \(AC = BC\), \(BD\) – высота, \(\angle ABD = 25^{\circ}\). Найдите \(\angle C\). Ответ дайте в градусах.

Так как \(BD\) – высота, то \(\angle ADB = 90^{\circ}\), тогда \(\angle A + \angle ABD = 90^{\circ}\). \(\angle ABD = 25^{\circ}\), тогда \(\angle A = 65^{\circ}\).

В равнобедренном треугольнике углы при основании равны, тогда \(\angle CBA = \angle A = 65^{\circ}\). Сумма углов треугольника равна \(180^{\circ}\), тогда \(\angle C = 180^{\circ} - \angle A - \angle CBA = 180^{\circ} - 65^{\circ} - 65^{\circ} = 50^{\circ}\).

Ответ: 50

Задание 19 #5839

В треугольнике \(ABC\): \(AD\) – биссектриса, \(AC = AD = BD\). Найдите наименьший угол в треугольнике \(ABC\). Ответ дайте в градусах.

У равнобедренного треугольника углы при основании равны. Так как \(AC = AD = BD\), то \(\angle ADC = \angle C\), \(\angle B = \angle BAD\).

Согласно теореме о внешнем угле треугольника, \(\angle ADC = \angle B + \angle BAD = 2\cdot \angle B\), тогда \(\angle C = 2\cdot \angle B > \angle B\). \(\angle BAC = \angle BAD + \angle DAC = \angle B + \angle DAC > \angle B\). Таким образом, \(\angle B\) – наименьший.

Так как \(AD\) – биссектриса, то \(\angle BAC = 2\cdot \angle BAD = 2\cdot \angle B\).

Итого: \(\angle C = 2\cdot \angle B\), \(\angle BAC = 2\cdot \angle B\), значит, \(\angle BAC + \angle B + \angle C = 5\cdot \angle B\). Так как сумма углов в треугольнике равна \(180^{\circ}\), то \(5\cdot \angle B = 180^{\circ}\), откуда находим \(\angle B = 36^{\circ}\).

Ответ: 36

Задание 20 #5840

В треугольнике \(ABC\): \(\angle A = 32^{\circ}\), \(\angle B = 70^{\circ}\). На продолжении стороны \(AC\) за точку \(C\) отложен отрезок \(CK = BC\). Найдите \(\angle K\) треугольника \(BCK\). Ответ дайте в градусах.

У равнобедренного треугольника углы при основании равны. Так как \(CK = BC\), то \(\angle CBK = \angle K\).

Согласно теореме о внешнем угле треугольника, \(\angle BCK = \angle A + \angle ABC = 32^{\circ} + 70^{\circ} = 102^{\circ}\).

Так как сумма углов в треугольнике равна \(180^{\circ}\), то \(\angle BCK + \angle CBK + \angle K = 180^{\circ}\), но \(\angle CBK = \angle K\), тогда \(102^{\circ} + 2\cdot \angle K = 180^{\circ}\), откуда находим \(\angle K = 39^{\circ}\).

Ответ: 39

Задание 21 #5841

В треугольнике \(ABC\): \(\angle A = 52^{\circ}\), \(\angle C = 71^{\circ}\). На продолжении стороны \(BC\) за точку \(B\) отложен отрезок \(BD = AB\). Найдите \(\angle D\) треугольника \(ABD\). Ответ дайте в градусах.

У равнобедренного треугольника углы при основании равны. Так как \(AB = BD\), то \(\angle BAD = \angle D\).

Согласно теореме о внешнем угле треугольника, \(\angle ABD = \angle C + \angle BAC = 71^{\circ} + 52^{\circ} = 123^{\circ}\).

Так как сумма углов в треугольнике равна \(180^{\circ}\), то \(\angle D + \angle BAD + \angle ABD = 180^{\circ}\), но \(\angle BAD = \angle D\), тогда \(2\cdot \angle D + \angle ABD = 180^{\circ}\), откуда находим \(\angle D = 28,5^{\circ}\).

Ответ: 28,5