Математика ЕГЭ
Русский язык ЕГЭ
Математика 5-7
Математика ОГЭ
Информатика
Физика
Обществознание
Кликните, чтобы открыть меню

16. Многоугольники. Базовые свойства

1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения

Равнобедренный треугольник (страница 4)

Задание 22 #5842

В треугольнике \(ABC\): \(\angle C = 40^{\circ}\), \(\angle B = 110^{\circ}\), \(AM\) – биссектриса, \(N\) – такая точка на \(AC\), что \(AB = AN\). Найдите \(\angle CMN\). Ответ дайте в градусах.

Сумма углов треугольника равна \(180^{\circ}\), тогда \(\angle BAC = 180^{\circ} - \angle B - \angle C = 180^{\circ} - 110^{\circ} - 40^{\circ} = 30^{\circ}\). Так как \(AM\) – биссектриса, то \(\angle MAN =\cdot \angle BAM = 15^{\circ}\).

Треугольники \(ABM\) и \(ANM\) равны по двум сторонам и углу между ними, тогда \(\angle BMA = \angle AMN\). \(\angle BMA = 180^{\circ} - \angle BAM - \angle B = 180^{\circ} - 15^{\circ} - 110^{\circ} = 55^{\circ}\), тогда \(\angle BMN = 2\cdot \angle BMA = 110^{\circ}\). Тогда \(\angle CMN = 180^{\circ} - 110^{\circ} = 70^{\circ}\).

Ответ: 70

Задание 23 #5843

В треугольнике \(ABC\): \(\angle A = 51^{\circ}\), \(\angle C = 77^{\circ}\), \(BD\) – биссектриса, \(P\) – такая точка на \(AB\), что \(PB = BC\). Найдите \(\angle ADP\). Ответ дайте в градусах.

Сумма углов в треугольнике равна \(180^{\circ}\), тогда \(\angle ABC = 180^{\circ} - \angle A - \angle C = 180^{\circ} - 51^{\circ} - 77^{\circ} = 52^{\circ}\). Так как \(BD\) – биссектриса, то \(\angle CBD = 0,5\cdot \angle ABC = 26^{\circ}\).

Треугольники \(PBD\) и \(CBD\) равны по двум сторонам и углу между ними, тогда \(\angle PDB = \angle CDB\). \(\angle CDB = 180^{\circ} - \angle CBD - \angle C = 180^{\circ} - 26^{\circ} - 77^{\circ} = 77^{\circ}\), тогда \(\angle PDC = 2\cdot \angle CDB = 154^{\circ}\). Тогда \(\angle ADP = 180^{\circ} - 154^{\circ} = 26^{\circ}\).

Ответ: 26

Задание 24 #5844

В треугольнике \(ABC\): \(\angle A = 22^{\circ}\), \(\angle C = 40^{\circ}\), \(BE\) – биссектриса внешнего угла при вершине \(B\), при этом точка \(E\) лежит на продолжении стороны \(AC\). На продолжении стороны \(AB\) за точку \(B\) выбрана точка \(D\), таким образом, что \(BC = BD\). Найдите \(\angle CED\). Ответ дайте в градусах.

Согласно теореме о внешнем угле треугольника, \(\angle CBD = \angle A + \angle ACB = 22^{\circ} + 40^{\circ} = 62^{\circ}\).

Так как \(BE\) – биссектриса \(\angle CBD\), то \(\angle CBE = 0,5 \cdot \angle CBD = 31^{\circ}\).

\(\angle BCE = 180^{\circ} - \angle ACB = 140^{\circ}\).

Так как сумма углов в треугольнике равна \(180^{\circ}\), то \(\angle BEC = 180^{\circ} - \angle CBE - \angle BCE = 9^{\circ}\).

Треугольники \(BCE\) и \(BDE\) равны по двум сторонам и углу между ними, тогда \(\angle CED = 2\cdot \angle BEC = 18^{\circ}\).

Ответ: 18

Задание 25 #5845

В треугольнике \(ABC\) на стороне \(BC\) отмечена точка \(D\), на отрезке \(AD\) выбрана точка \(E\) так, что \(\angle BAD = \angle ECD = \angle EAC + \angle ECA\). Внешний угол при вершине \(B\) равен \(138^{\circ}\). Найдите \(\angle BAD\). Ответ дайте в градусах.

Согласно теореме о внешнем угле треугольника, внешний угол в треугольнике равен сумме двух углов треугольника, не смежных с ним.
\(\angle ADB\) – внешний для треугольника \(ADC\), тогда \(\angle ADB = \angle EAC + \angle ECA + \angle ECD = 2\cdot \angle ECD = 2\cdot \angle BAD\).
Внешний угол при вершине \(B\) равен \(\angle BAD + \angle ADB = 3\cdot \angle BAD = 138^{\circ}\), тогда \(\angle BAD = 138^{\circ} : 3 = 46^{\circ}\).

Ответ: 46

Задание 26 #5846

В треугольнике \(ABC\): \(AB = BC\), \(BM\) – биссектриса, \(AC = 5\). Найдите \(AM\).

В равнобедренном треугольнике биссектриса, проведённая к основанию, является медианой и высотой, тогда \(BM\) – медиана и \(AM = MC\). Таким образом, \(5 = AC = AM + MC = 2\cdot AM\), откуда находим \(AM = 2,5\).

Ответ: 2,5

Задание 27 #5847

В треугольнике \(ABC\): \(BM\) – высота, причем \(AM = MC\), \(\angle ABM = 28^{\circ}\). Найдите \(\angle ABC\). Ответ дайте в градусах.

в треугольниках \(ABM\) и \(BMC\):

\(AM = MC\),

\(\angle AMB = \angle BMC\),

\(MB\) – общая,

тогда треугольники \(ABM\) и \(BMC\) равны по двум сторонам и углу между ними и, значит, \(AB = BC\), то есть треугольник \(ABC\) – равнобедренный. В равнобедренном треугольнике медиана, проведённая к основанию, является биссектрисой и высотой, значит \(\angle MBC = \angle ABM = 28^{\circ}\), тогда \(\angle ABC = 2\cdot \angle ABM = 56^{\circ}\).

Ответ: 56

Задание 28 #5848

В треугольнике \(ABC\): \(BM\) и \(CN\) – медианы, \(BM = CN\), \(O\) – точка пересечения \(BM\) и \(CN\), \(\angle OBC = 36^{\circ}\). Найдите \(\angle BOC\). Ответ дайте в градусах.

В треугольнике медианы точкой пересечения делятся в отношении \(2:1\), считая от вершины. Так как \(BM = CN\), то \(BO = \dfrac{2}{3}BM = \dfrac{2}{3}CN = CO\), тогда треугольник \(BOC\) – равнобедренный. В равнобедренном треугольнике углы при основании равны, тогда \(\angle OCB = \angle OBC = 36^{\circ}\).

Так как сумма углов в треугольнике равна \(180^{\circ}\), то \(\angle BOC = 180^{\circ} - \angle OBC - \angle OCB = 180^{\circ} - 36^{\circ} - 36^{\circ} = 108^{\circ}\).

Ответ: 108