Математика ЕГЭ
Русский язык ЕГЭ
Математика 5-7
Математика ОГЭ
Информатика
Физика
Обществознание
Темы отсутствуют
Кликните, чтобы открыть меню

16. Многоугольники. Базовые свойства

1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения

Равнобедренный треугольник (страница 5)

Задание 29 #5849

В треугольнике \(ABC\): \(BF\) и \(AE\) – медианы, \(AE = BF\), \(O\) – точка пересечения \(BF\) и \(AE\), \(\angle FOE = 147^{\circ}\). Найдите \(\angle ABO\). Ответ дайте в градусах.

\(\angle AOB = \angle FOE = 147^{\circ}\) (как вертикальные).

В треугольнике медианы точкой пересечения делятся в отношении \(2:1\), считая от вершины. Так как \(AE = BF\), то \(AO = \dfrac{2}{3}AE = \dfrac{2}{3}BF = BO\), тогда треугольник \(ABO\) – равнобедренный. В равнобедренном треугольнике углы при основании равны, тогда \(\angle OAB = \angle ABO\).

Так как сумма углов в треугольнике равна \(180^{\circ}\), то \(180^{\circ} = \angle OAB + \angle ABO + \angle AOB = 2\cdot \angle ABO + 147^{\circ}\), откуда \(\angle ABO = 16,5^{\circ}\).

Ответ: 16,5

Задание 30 #5850

В треугольнике \(ABC\): \(BN\) и \(CM\) – медианы, \(P\) – точка пересечения \(BN\) и \(CM\), \(\angle PBC = 35^{\circ}\), \(\angle BPC = 110^{\circ}\), \(AB = 4\). Найдите \(NC\).

Так как сумма углов в треугольнике равна \(180^{\circ}\), то \(\angle PCB = 180^{\circ} - 110^{\circ} - 35^{\circ} = 35^{\circ} = \angle PBC\), значит, треугольник \(PBC\) – равнобедренный и \(PB = PC\).

В треугольнике медианы точкой пересечения делятся в отношении \(2:1\), считая от вершины. Так как \(PB = PC\), то \(MP = 0,5\cdot PC = 0,5 \cdot PB = PN\).

\(\angle MPB\) и \(\angle NPC\) – вертикальные, а значит, равные.

Таким образом, треугольники \(MPB\) и \(PNC\) – равны (по двум сторонам и углу между ними), тогда \(NC = MB = 0,5\cdot AB = 2\).

Ответ: 2