Математика ЕГЭ
Русский язык ЕГЭ
Математика 5-7
Математика ОГЭ
Информатика
Физика
Обществознание
Темы отсутствуют
Кликните, чтобы открыть меню

16. Многоугольники. Базовые свойства

1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения

Формулы и задачи по тригонометрии (страница 3)

Задание 15 #5923

Основания равнобедренной трапеции равны \(51\) и \(65\). Боковые стороны равны \(25\). Найдите синус острого угла трапеции.

Рассмотрим рисунок:


 

Проведем \(BH\perp AD\). По свойству равнобедренной трапеции \(AH=\frac12\left(AD-BC\right)=7\). Тогда по теореме Пифагора из \(\triangle ABH\): \[BH=\sqrt{25^2-7^2}=\sqrt{(25-7)(25+7)}=\sqrt{18\cdot 32}=3\cdot 8=24\] Тогда из \(\triangle ABH\) \[\sin\angle A=\dfrac{BH}{AB}=\dfrac{24}{25}=0,96\]

Ответ: 0,96

Задание 16 #5924

Основания равнобедренной трапеции равны \(43\) и \(73\). Косинус острого угла трапеции равен \(\dfrac57\). Найдите боковую сторону трапеции.


 

Проведем \(BH\perp AD\). По свойству равнобедренной трапеции \(AH=\frac12\left(AD-BC\right)=15\). Тогда из \(\triangle ABH\): \[\dfrac57=\cos\angle A=\dfrac{AH}{AB}\quad\Rightarrow\quad AB=21\]

Ответ: 21

Задание 17 #5925

Большее основание равнобедренной трапеции равно \(34\). Боковая сторона равна \(14\). Синус острого угла равен \(\dfrac{2\sqrt{10}}7\). Найдите меньшее основание.


 

Проведем \(BH\perp AD\). Из \(\triangle ABH\): \[\dfrac{2\sqrt{10}}7=\sin\angle A=\dfrac{BH}{AB}\quad\Rightarrow\quad BH=4\sqrt{10}\] Тогда по теореме Пифагора \[AH=\sqrt{14^2-(4\sqrt{10})^2}=6\] Так как \(AH=0,5(AD-BC)\), то \(BC=AD-2AH=34-12=22\).

Ответ: 22

Задание 18 #5926

В треугольнике \(ABC\): \(\angle C = 90^{\circ}\), \(\sin {\angle BAC} = \dfrac{2}{3}\). Найдите \(AC\), если \(AB = 6\sqrt{5}\).



Синус острого угла в прямоугольном треугольнике равен отношению противолежащего этому углу катета к гипотенузе, тогда \[\dfrac{BC}{AB} = \dfrac{2}{3}\qquad\Rightarrow\qquad BC = \dfrac{2}{3}AB = 4\sqrt{5}.\]

По теореме Пифагора \(AC^2 = AB^2 - BC^2 = 36\cdot 5 - 16\cdot 5 = 20\cdot 5 = 10^2\), тогда \(AC = 10\).

Ответ: 10

Задание 19 #5927

В параллелограмме \(ABCD\): \(AB = 15\), \(\sin{\angle D} = 0,4\). Найдите длину \(h\) – высоты, опущенной из вершины \(B\) на сторону \(AD\).



В параллелограмме сумма односторонних углов равна \(180^{\circ}\), тогда \(\sin{\angle A} = \sin{(\pi - \angle D)} = \sin{\angle D} = 0,4\).

Синус острого угла в прямоугольном треугольнике равен отношению противолежащего этому углу катета к гипотенузе, тогда \[0,4 = \dfrac{h}{AB} = \dfrac{h}{15} \qquad\Rightarrow\qquad h = 6.\]

Ответ: 6

Задание 20 #5928

В прямоугольнике \(ABCD\) известно, что \(BC:AB = 2:1\), \(AC\) – диагональ. Найдите отношение косинуса угла \(CAD\) к косинусу угла \(ACD\).



По определению косинуса и синуса острого угла в прямоугольном треугольнике получаем, что \(\cos{\angle ACD} = \sin{\angle CAD}\), тогда \[\dfrac{\cos{\angle CAD}}{\cos{\angle ACD}} = \dfrac{\cos{\angle CAD}}{\sin{\angle CAD}} = \mathrm{ctg}\, \angle CAD = \dfrac{AD}{CD} = \dfrac{BC}{AB} = 2.\]

Ответ: 2

Задание 21 #5929

В треугольнике \(ABC\): \(\angle A = 90^{\circ}\), \(\mathrm{ctg}\, \angle B = 0,6\). Площадь треугольника \(ABC\) равна \(7,5\). Найдите \(AB + AC\).



\[0,6 = \mathrm{ctg}\, \angle B = \dfrac{AB}{AC}.\]

Площадь треугольника \(ABC\) равна \(7,5\), тогда \(7,5 = 0,5\cdot AB\cdot AC\).

Таким образом, \[\dfrac{AB}{AC} = 0,6,\qquad AB\cdot AC = 15.\] Перемножая равенства, получим \(AB^2 = 9\), тогда \(AB = 3\), \(AC = 5\), значит, \(AB + AC = 8\).

Ответ: 8