Математика ЕГЭ
Русский язык ЕГЭ
Математика 5-7
Математика ОГЭ
Информатика
Физика
Обществознание
Кликните, чтобы открыть меню

16. Многоугольники. Базовые свойства

1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения

Формулы и задачи по тригонометрии (страница 4)

Задание 22 #5930

В четырёхугольнике \(ABCD\): \(AD = 5\), \(AD\parallel BC\), \(BD\) перпендикулярна к \(AD\), \(\sin{\angle A} = \cos{\angle A}\), \(\sin{\angle C} = \dfrac{5}{\sqrt{34}}\). Найдите \(BC\).


 

Треугольник \(ABD\) – прямоугольный, тогда \(\angle A\) – острый. В силу основного тригонометрического тождества (для любого угла \(\alpha\) выполнено \(\sin^2{\alpha} + \cos^2{\alpha} = 1\)) из равенства \(\sin{\angle A} = \cos{\angle A}\) получаем, что \[\sin{\angle A} = \pm \dfrac{1}{\sqrt{2}},\] но \(\angle A\) – острый, тогда \[\sin{\angle A} = \dfrac{1}{\sqrt{2}}\] и, значит, \(\angle A = 45^{\circ}\).

\(\angle ABD = 90^{\circ} - \angle A = 45^{\circ} = \angle A\), тогда треугольник \(ABD\) – равнобедренный и \(BD = AD = 5\).

\(AD \parallel BC\), \(BD\) перпендикулярна к \(AD\), тогда \(BD\) перпендикулярна и к \(BC\).

Так как синус острого угла в прямоугольном треугольнике равен отношению противолежащего этому углу катета к гипотенузе, то \[\dfrac{5}{\sqrt{34}} = \dfrac{5}{CD} \qquad\Rightarrow\qquad CD = \sqrt{34}.\]

По теореме Пифагора \(BC^2 = CD^2 - BD^2 = 34 - 25 = 9 = 3^2\), тогда \(BC = 3\).

Ответ: 3

Задание 23 #5931

Большее основание равнобедренной трапеции равно \(25\). Боковая сторона равна \(3\). Синус острого угла равен \(\frac{\sqrt{11}}6\). Найдите меньшее основание.

Проведем две высоты \(CK\) и \(DH\). По свойству равнобедренной трапеции \(HDCK\) – прямоугольник, то есть \(KH=CD=x\). Тогда \(AH+BC=25-x\), откуда \[AH=\dfrac{25-x}2\]

Так как \(\sin\angle A=\frac{\sqrt{11}}6\), то \[\cos \angle A=\sqrt{1-\dfrac{11}{36}}=\dfrac56\] Следовательно, из \(\triangle ADH\): \[\dfrac56=\cos \angle A=\dfrac{AH}{AD}\quad\Rightarrow\quad x=20\]

Ответ: 20