Математика ЕГЭ
Русский язык ЕГЭ
Математика 5-7
Математика ОГЭ
Информатика
Физика
Обществознание
Кликните, чтобы открыть меню

17. Окружность

1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения

Описанная окружность (страница 2)

Задание 8 #6053

Радиус описанной около четырехугольника \(ABCD\) окружности равен \(3\). Найдите площадь этого четырехугольника, если известно, что все его стороны равны.

Рассмотрим картинку:


 

Докажем, что данный четырехугольник является квадратом.

 

Т.к. хорды \(AB\) и \(CD\) равны, то равны дуги \(\buildrel\smile\over{AB}\) и \(\buildrel\smile\over{CD}\). Следовательно, вписанные углы, опирающиеся на эти дуги, будут тоже равны:

\[\angle ADB=\angle ACB=\angle DAC=\angle DBC\]

Таким образом, \(\angle ADB=\angle DBC\) – накрест лежащие при прямых \(AD\) и \(BC\) и секущей \(BD\), следовательно, \(AD\parallel BC\).

 

Аналогичным образом доказывается, что \(AB\parallel CD\).

 

Таким образом, \(ABCD\) – параллелограмм. Т.к. он вписанный, то это – прямоугольник. Т.к. все его стороны равны, то это квадрат.

 

В квадрате центр описанной окружности лежит на пересечении диагоналей, следовательно, \(AC=2R=6\). По свойству квадрата \(AD=AC\div \sqrt2=3\sqrt2\). Следовательно, площадь

\[S_{ABCD}=AD^2=(3\sqrt2)^2=18.\]

 

Замечание.

Можно было доказать, что \(ABCD\) – квадрат, другим способом:

\(\triangle ABD=\triangle CBD\) по трем сторонам. Следовательно, \(\angle A=\angle C\). Но т.к. четырехугольник вписанный, то сумма противоположных углов равна \(180^\circ\), следовательно, \(\angle A+\angle C=180^\circ\). Отсюда следует, что \(\angle A=\angle C=90^\circ\). Аналогично \(\angle B=\angle D=90^\circ\). По признаку четырехугольник, у которого все углы прямые, является прямоугольником. Но т.к. у него еще и все стороны равны, то это квадрат.

Ответ: 18

Задание 9 #6054

В окружность вписан пятиугольник \(ABCDE\), причем \(AB=BC=DE=EA\), \(\angle CAE=75^\circ\). Найдите \(\angle A\). Ответ дайте в градусах.

Рассмотрим картинку:


 

Т.к. равные хорды стягивают равные дуги, то меньшие полуокружности дуги \(\buildrel\smile\over{AB}\), \(\buildrel\smile\over{BC}\), \(\buildrel\smile\over{DE}\), \(\buildrel\smile\over{EA}\) равны:

\[\buildrel\smile\over{AB}=\buildrel\smile\over{BC}= \buildrel\smile\over{DE}=\buildrel\smile\over{EA}=\alpha.\]

Пусть \(\buildrel\smile\over{CD}=\beta\).

 

Следовательно, вписанный угол \[\angle CAE=\frac12\left(\alpha+\beta\right)=75^\circ. \qquad (1)\]

Т.к. градусная мера всей окружности равна \(360^\circ\), то

\[4\alpha+\beta=360^\circ \qquad (2)\]

Решая систему из уравнений \((1)\) и \((2)\), получаем, что \(\alpha=70^\circ, \beta=80^\circ\).

 

Следовательно, \(\angle A=\frac12\left(2\alpha+\beta\right)=110^\circ\).

Ответ: 110

Задание 10 #6055

В окружность вписан пятиугольник \(ABCDE\), причем \(AB=BC=DE=EA\), \(\angle CAD=30^\circ\). Найдите меньший из углов данного пятиугольника. Ответ дайте в градусах.

Рассмотрим картинку:


 

Т.к. равные хорды стягивают равные дуги, то меньшие полуокружности дуги \(\buildrel\smile\over{AB}\), \(\buildrel\smile\over{BC}\), \(\buildrel\smile\over{DE}\), \(\buildrel\smile\over{EA}\) равны:

\[\buildrel\smile\over{AB}=\buildrel\smile\over{BC}= \buildrel\smile\over{DE}=\buildrel\smile\over{EA}=\alpha.\]

Т.к. \(\angle CAD=30^\circ\), то \(\buildrel\smile\over{CD}=60^\circ\).

 

Т.к. градусная мера всей окружности равна \(360^\circ\), то

\[4\alpha+60^\circ=360^\circ \quad \Rightarrow \quad \alpha=75^\circ\]

Таким образом, \(\angle A=\angle B=\angle E=\frac12\left(2\alpha+60^\circ\right)=105^\circ\), \(\angle C=\angle D=\frac12\cdot 3\alpha=112,5^\circ\). Следовательно, меньший из углов равен \(105^\circ\).

Ответ: 105

Задание 11 #6056

Около пятиугольника \(ABCDE\) описана окружность, причем \(AB=BC=CD=DE\). Угол \(A\) равен \(97,5^\circ\). Найдите угол \(ADE\). Ответ дайте в градусах.

Рассмотрим картинку:


 

Т.к. равные хорды стягивают равные дуги, то меньшие полуокружности дуги \(\buildrel\smile\over{AB}\), \(\buildrel\smile\over{BC}\), \(\buildrel\smile\over{CD}\), \(\buildrel\smile\over{DE}\) равны:

\[\buildrel\smile\over{AB}=\buildrel\smile\over{BC}= \buildrel\smile\over{CD}=\buildrel\smile\over{DE}=\alpha.\]

Следовательно, \(\angle A=\frac12\cdot 3\alpha=97,5^\circ \quad \Rightarrow \quad \alpha=65^\circ\).

 

Т.к. градусная мера всей окружности равна \(360^\circ\), то

\[4\alpha+\beta=360^\circ \quad \Rightarrow \quad \beta=100^\circ\]

Тогда вписанный \(\angle ADE=\frac12\beta=50^\circ\).

Ответ: 50

Задание 12 #6057

Около пятиугольника \(ABCDE\) описана окружность, причем \(AB=BC=CD=DE=3\). \(O\) – точка пересечения отрезков \(BE\) и \(AD\). Найдите \(BO\).

Рассмотрим картинку:


 

1) Т.к. равные хорды стягивают равные дуги, то меньшие полуокружности дуги \(\buildrel\smile\over{AB}\), \(\buildrel\smile\over{BC}\), \(\buildrel\smile\over{CD}\), \(\buildrel\smile\over{DE}\) равны:

\[\buildrel\smile\over{AB}=\buildrel\smile\over{BC}= \buildrel\smile\over{CD}=\buildrel\smile\over{DE}=\alpha.\]

Пусть также \(\buildrel\smile\over{EA}=\beta\).

 

2) \(\angle CBE=\frac12(\alpha+\alpha)=\alpha\), \(\angle BCD=\frac12(\alpha+\beta+\alpha)=\alpha+\frac12\beta\). Следовательно, \(\angle CBE+\angle BCD=2\alpha+\frac12\beta\).

 

Заметим, что вся окружность равна \(360^\circ\), следовательно, \(4\alpha+\beta=360^\circ\), откуда \(2\alpha+\frac12\beta=180^\circ\). Таким образом, \(\angle CBE\) и \(\angle BCD\) – односторонние углы при прямых \(CD\) и \(BE\) и секущей \(BC\). Следовательно, \(CD\parallel BE\).

 

Аналогично доказывается, что \(AD\parallel BC\).

 

3) Значит, \(BCDO\) – параллелограмм (\(BO\parallel CD, BC\parallel OD\)). А в параллелограмме противоположные стороны равны, следовательно, \(BO=CD=3\).

Ответ: 3

Задание 13 #6058

Около пятиугольника \(ABCDE\) описана окружность, причем \(AB=BC=CD=DE=4\sqrt3\), \(\angle A=90^\circ\). Найдите \(AE\).

Рассмотрим картинку:


 

Т.к. равные хорды стягивают равные дуги, то меньшие полуокружности дуги \(\buildrel\smile\over{AB}\), \(\buildrel\smile\over{BC}\), \(\buildrel\smile\over{CD}\), \(\buildrel\smile\over{DE}\) равны:

\[\buildrel\smile\over{AB}=\buildrel\smile\over{BC}= \buildrel\smile\over{CD}=\buildrel\smile\over{DE}=\alpha.\]

Следовательно, \(\angle A=90^\circ=\frac32\alpha\), откуда \(\alpha=60^\circ\).

 

Значит, вписанный \(\angle AEB=\frac12\alpha=30^\circ\). Следовательно, из прямоугольного треугольника \(AEB\)

\[\mathrm{tg}\,30^\circ=\dfrac{AB}{AE} \quad \Rightarrow \quad AE=12.\]

Ответ: 12

Задание 14 #6059

Около пятиугольника \(ABCDE\) описана окружность, причем \(AB=BC=CD=DE\), \(AE=6\sqrt3\), \(\angle A=45^\circ\). Найдите радиус описанной около этого пятиугольника окружности.

Рассмотрим картинку:


 

Т.к. равные хорды стягивают равные дуги, то меньшие полуокружности дуги \(\buildrel\smile\over{AB}\), \(\buildrel\smile\over{BC}\), \(\buildrel\smile\over{CD}\), \(\buildrel\smile\over{DE}\) равны:

\[\buildrel\smile\over{AB}=\buildrel\smile\over{BC}= \buildrel\smile\over{CD}=\buildrel\smile\over{DE}=\alpha.\]

Следовательно, \(\angle A=45^\circ=\frac32\alpha\), откуда \(\alpha=30^\circ\).

 

Значит, вписанный \[\angle ABE=\frac12\buildrel\smile\over{AE}= \frac12\left(360^\circ-4\alpha\right)=120^\circ\]

Тогда, т.к. \(\triangle ABE\) – вписанный, то \(\dfrac{AE}{\sin \angle B}=2R\), где \(R\) – радиус данной окружности. Следовательно:

\[\dfrac{AE}{\sin \angle B}=2R \quad \Rightarrow \quad R=6.\]

Ответ: 6