Математика ЕГЭ
Русский язык ЕГЭ
Математика 5-7
Математика ОГЭ
Информатика
Физика
Обществознание
Кликните, чтобы открыть меню

17. Окружность

1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения

Описанная окружность (страница 3)

Задание 15 #6078

В четырёхугольнике \(ABCD\): диагонали \(AC\) и \(BD\) пересекаются в точке \(M\), \(\angle ABC + \angle ADC = 180^{\circ}\). Найдите отношение углов \(CBD\) и \(CAD\).

Если в выпуклом четырёхугольнике сумма противоположных углов равна \(180^{\circ}\), то около него можно описать окружность, тогда около \(ABCD\) можно описать окружность.



\(\angle CBD\) и \(\angle CAD\) – вписанные, опирающиеся на одну дугу, тогда они равны и их отношение равно 1.

Ответ: 1

Задание 16 #6079

Треугольники \(ABC\) и \(ADC\) имеют общее основание, \(\angle ABC = \angle ADC\), \(M\) – точка пересечения \(AD\) и \(BC\), \(AM = 10\), \(MD = 6\), \(BM = 8\). Найдите \(MC\).

Так как \(\angle ABC = \angle ADC\), то около четырёхугольника \(ABDC\) можно описать окружность. Покажем это:



\(\angle AMB\) и \(\angle DMC\) – вертикальные, тогда \(\angle AMB = \angle DMC\); \(\angle ABC = \angle ADC\), тогда треугольники \(ABM\) и \(DMC\) – подобны по двум углам, откуда получаем: \[\dfrac{AM}{MC} = \dfrac{BM}{MD},\] но углы \(BMD\) и \(AMC\) также вертикальные, тогда \(\angle BMD = \angle AMC\) и треугольники \(BMD\) и \(AMC\) – подобны, так как если угол одного треугольника равен углу другого треугольника, а стороны, образующие этот угол в одном треугольнике, пропорциональны соответствующим сторонам другого, то такие треугольники подобны.

 

Из подобия получаем: \(\angle CBD = \angle CAD\), \(\angle MCD = BAM\), тогда \(\angle ABC + \angle CBD + \angle ACB + \angle BCD = \angle ABC + \angle CAD + \angle ACB + \angle BAM = 180^{\circ}\), так как это сумма углов треугольника \(ABC\).

Если в выпуклом четырёхугольнике сумма противоположных углов равна \(180^{\circ}\), то около него можно описать окружность, тогда около \(ABDC\) можно описать окружность.

Так как произведение отрезков одной из пересекающихся хорд равно произведению отрезков другой, то \(AM \cdot MD = BM \cdot MC\), то есть \(60 = 8\cdot MC\), откуда \(MC = 7,5\).

Ответ: 7,5

Задание 17 #6080

Шестиугольник \(ABCDEF\) вписан в окружность. Найдите \(\angle FAB + \angle BCD + \angle DEF\). Ответ дайте в градусах.

\(\angle FAB\), \(\angle BCD\) и \(\angle DEF\) – вписанные, тогда \(\angle FAB = 0,5\cdot\smile FEDCB\), \(\angle BCD = 0,5\cdot\smile BAFED\), \(\angle DEF = 0,5\cdot\smile FABCD\).


 

Таким образом, \[\begin{aligned} \angle FAB + \angle BCD + \angle DEF &= 0,5\cdot\smile FEDCB + 0,5\cdot \smile BAFED + 0,5\cdot\smile FABCD =\\ &= 0,5(\smile FEDCB + \smile BAFED + \smile FABCD) = 0,5\cdot 2l = l, \end{aligned}\] где \(l\) – градусная мера окружности.

Так как \(l = 360^\circ\), то \(\angle FAB + \angle BCD + \angle DEF = 360^\circ\).

Ответ: 360

Задание 18 #6081

Восьмиугольник \(ABCDEFGH\) вписан в окружность. Найдите \(\angle HAB + \angle BCD + \angle DEF + \angle FGH\). Ответ дайте в градусах.

\(\angle HAB\), \(\angle BCD\), \(\angle DEF\) и \(\angle FGH\) – вписанные, тогда \(\angle HAB = 0,5\cdot\smile BCDEFGH\), \(\angle BCD = 0,5\cdot\smile DEFGHAB\), \(\angle DEF = 0,5\cdot\smile FGHABCD\), \(\angle FGH = 0,5\cdot\smile HABCDEF\).



Назовём меньшую дугу \(\smile AB\) малой. Аналогично назовём меньшие дуги \(\smile BC\), ..., \(\smile HA\) малыми.

Каждую из дуг \(\smile BCDEFGH\), \(\smile DEFGHAB\), \(\smile FGHABCD\), \(\smile HABCDEF\) можно разложить в сумму малых дуг.

\(\angle HAB + \angle BCD + \angle DEF + \angle FGH = 0,5\cdot\)(сумму некоторых малых дуг). Остаётся понять, сколько раз в данную сумму войдёт каждая малая дуга.

Например, \(\smile AB\) войдёт трижды (среди слагаемых \(\smile BCDEFGH\), \(\smile DEFGHAB\), \(\smile FGHABCD\), \(\smile HABCDEF\) она не входит только в \(\smile BCDEFGH\)).

Аналогично любая дуга войдёт в данную сумму трижды, следовательно, \[\angle HAB + \angle BCD + \angle DEF + \angle FGH = 0,5\cdot 3l,\] где \(l\) – градусная мера окружности.

Так как \(l = 360^\circ\), то \(\angle HAB + \angle BCD + \angle DEF + \angle FGH = 540^\circ\).

Ответ: 540

Задание 19 #6055

В окружность вписан пятиугольник \(ABCDE\), причем \(AB=BC=DE=EA\), \(\angle CAD=30^\circ\). Найдите меньший из углов данного пятиугольника. Ответ дайте в градусах.

Рассмотрим картинку:


 

Т.к. равные хорды стягивают равные дуги, то меньшие полуокружности дуги \(\buildrel\smile\over{AB}\), \(\buildrel\smile\over{BC}\), \(\buildrel\smile\over{DE}\), \(\buildrel\smile\over{EA}\) равны:

\[\buildrel\smile\over{AB}=\buildrel\smile\over{BC}= \buildrel\smile\over{DE}=\buildrel\smile\over{EA}=\alpha.\]

Т.к. \(\angle CAD=30^\circ\), то \(\buildrel\smile\over{CD}=60^\circ\).

 

Т.к. градусная мера всей окружности равна \(360^\circ\), то

\[4\alpha+60^\circ=360^\circ \quad \Rightarrow \quad \alpha=75^\circ\]

Таким образом, \(\angle A=\angle B=\angle E=\frac12\left(2\alpha+60^\circ\right)=105^\circ\), \(\angle C=\angle D=\frac12\cdot 3\alpha=112,5^\circ\). Следовательно, меньший из углов равен \(105^\circ\).

Ответ: 105

Задание 20 #6047

Около треугольника \(ABC\) описана окружность с центром в точке \(O\). \(\angle BAO=15^\circ, \angle CBO=40^\circ\). Найдите \( \angle ACO\). Ответ дайте в градусах.

Рассмотрим картинку:


 

Т.к. треугольники \(AOB\), \(BOC\), \(COA\) – равнобедренные, то \(\angle OBA=15^\circ, \angle OCB=40^\circ\), \(\angle OCA=\angle OAC=\alpha\).

 

Т.к. сумма углов треугольника \(ABC\) равна \(180^\circ\), то \[(15^\circ+\alpha)+(\alpha+40^\circ)+(40^\circ+15^\circ)=180^\circ \quad \Rightarrow \quad 2\alpha=180^\circ-2(15^\circ+40^\circ)=70^\circ \quad \Rightarrow \quad \alpha=35^\circ.\]

Ответ: 35

Задание 21 #6048

Около треугольника \(ABC\) описана окружность с центром в точке \(O\). \(\angle BAO+\angle CBO=50^\circ\). Найдите \( \angle ACO\). Ответ дайте в градусах.

Рассмотрим картинку:


 

Т.к. треугольники \(AOB\), \(BOC\), \(COA\) – равнобедренные, то \(\angle OBA=\angle OAB=\beta\), \(\angle OCB=\angle OBC=\gamma\), \(\angle OCA=\angle OAC=\alpha\).
Значит, \(\beta+\gamma=50^\circ\).

 

Т.к. сумма углов треугольника \(ABC\) равна \(180^\circ\), то \[(\beta+\alpha)+(\alpha+\gamma)+(\gamma+\beta)=180^\circ \quad \Rightarrow \quad 2\alpha=180^\circ-2(\beta+\gamma)=80^\circ \quad \Rightarrow \quad \alpha=40^\circ.\]

Ответ: 40