Математика ЕГЭ
Русский язык ЕГЭ
Математика 5-7
Математика ОГЭ
Информатика
Физика
Обществознание
Кликните, чтобы открыть меню

17. Окружность

1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения

Описанная окружность (страница 4)

Задание 22 #6049

Около треугольника \(ABC\) описана окружность с центром в точке \(O\). \(\angle BAO=20^\circ, \angle BCO=30^\circ\). Найдите \( \angle AOC\). Ответ дайте в градусах.

Рассмотрим картинку:


 

Т.к. треугольники \(AOB\), \(BOC\) – равнобедренные, то \(\angle OBA=\angle OAB=20^\circ\), \(\angle OBC=\angle OCB=30^\circ\). Следовательно, \(\angle B=20^\circ+30^\circ=50^\circ\).

 

Т.к. \(\angle AOC\) – центральный угол, опирающийся на ту же дугу \(AC\), что и вписанный \(\angle B\), то \(\angle AOC=2\angle B=100^\circ\).

Ответ: 100

Задание 23 #6050

В выпуклом четырехугольнике \(ABCD\) \(\angle ABD=\angle ACD\). Найдите \(\angle A-\angle B+\angle C-\angle D\). Ответ дайте в градусах.

Рассмотрим картинку:


 

По признаку около этого четырехугольника можно описать окружность. Следовательно, сумма двух противоположных его углов равна \(180^\circ\). Таким образом, \[\angle A-\angle B+\angle C-\angle D= (\angle A+\angle C)-(\angle B+\angle D)=180^\circ-180^\circ=0^\circ.\]

Ответ: 0

Задание 24 #6051

Во вписанном четырехугольнике \(LEGO\) стороны \(LE\) и \(GO\) равны. Найдите сумму углов \(\angle L\) и \(\angle E\). Ответ дайте в градусах.

Рассмотрим картинку:


 

Т.к. хорды \(LE\) и \(GO\) равны, то равны дуги \(\buildrel\smile\over{LE}\) и \(\buildrel\smile\over{GO}\). Следовательно, вписанные углы, опирающиеся на эти дуги, будут тоже равны:

\[\angle LOE=\angle LGE=\angle OLG=\angle OEG\]

Таким образом, \(LEGO\) – трапеция (\(\angle LOE=\angle OEG\) – накрест лежащие при прямых \(EG\) и \(LO\) и секущей \(EO\)). Значит, \(\angle L+\angle E=180^\circ\) как сумма односторонних углов при параллельных прямых.

Ответ: 180

Задание 25 #6052

Во вписанном четырехугольнике \(ABCD\) противоположные стороны попарно равны \(5\) и \(12\). Найдите радиус описанной около этого четырехугольника окружности.

Рассмотрим картинку:


 

Т.к. хорды \(AB\) и \(CD\) равны, то равны дуги \(\buildrel\smile\over{AB}\) и \(\buildrel\smile\over{CD}\). Следовательно, вписанные углы, опирающиеся на эти дуги, будут тоже равны:

\[\angle ADB=\angle ACB=\angle DAC=\angle DBC\]

Таким образом, \(\angle ADB=\angle DBC\) – накрест лежащие при прямых \(AD\) и \(BC\) и секущей \(BD\), следовательно, \(AD\parallel BC\).

 

Аналогичным образом доказывается, что \(AB\parallel CD\).

 

Таким образом, \(ABCD\) – параллелограмм. Т.к. он вписанный, то это – прямоугольник.

 

В прямоугольнике центр описанной окружности лежит на пересечении диагоналей. Следовательно, по теореме Пифагора \(AC=\sqrt{5^2+12^2}=13\), а \(R=\frac12AC=6,5\).

 

Замечание.

Можно было доказать, что \(ABCD\) – прямоугольник, другим способом:

\(\triangle ABD=\triangle CBD\) по трем сторонам. Следовательно, \(\angle A=\angle C\). Но т.к. четырехугольник вписанный, то сумма противоположных углов равна \(180^\circ\), следовательно, \(\angle A+\angle C=180^\circ\). Отсюда следует, что \(\angle A=\angle C=90^\circ\). Аналогично \(\angle B=\angle D=90^\circ\). По признаку четырехугольник, у которого все углы прямые, является прямоугольником.

Ответ: 6,5

Задание 26 #6053

Радиус описанной около четырехугольника \(ABCD\) окружности равен \(3\). Найдите площадь этого четырехугольника, если известно, что все его стороны равны.

Рассмотрим картинку:


 

Докажем, что данный четырехугольник является квадратом.

 

Т.к. хорды \(AB\) и \(CD\) равны, то равны дуги \(\buildrel\smile\over{AB}\) и \(\buildrel\smile\over{CD}\). Следовательно, вписанные углы, опирающиеся на эти дуги, будут тоже равны:

\[\angle ADB=\angle ACB=\angle DAC=\angle DBC\]

Таким образом, \(\angle ADB=\angle DBC\) – накрест лежащие при прямых \(AD\) и \(BC\) и секущей \(BD\), следовательно, \(AD\parallel BC\).

 

Аналогичным образом доказывается, что \(AB\parallel CD\).

 

Таким образом, \(ABCD\) – параллелограмм. Т.к. он вписанный, то это – прямоугольник. Т.к. все его стороны равны, то это квадрат.

 

В квадрате центр описанной окружности лежит на пересечении диагоналей, следовательно, \(AC=2R=6\). По свойству квадрата \(AD=AC\div \sqrt2=3\sqrt2\). Следовательно, площадь

\[S_{ABCD}=AD^2=(3\sqrt2)^2=18.\]

 

Замечание.

Можно было доказать, что \(ABCD\) – квадрат, другим способом:

\(\triangle ABD=\triangle CBD\) по трем сторонам. Следовательно, \(\angle A=\angle C\). Но т.к. четырехугольник вписанный, то сумма противоположных углов равна \(180^\circ\), следовательно, \(\angle A+\angle C=180^\circ\). Отсюда следует, что \(\angle A=\angle C=90^\circ\). Аналогично \(\angle B=\angle D=90^\circ\). По признаку четырехугольник, у которого все углы прямые, является прямоугольником. Но т.к. у него еще и все стороны равны, то это квадрат.

Ответ: 18

Задание 27 #6054

В окружность вписан пятиугольник \(ABCDE\), причем \(AB=BC=DE=EA\), \(\angle CAE=75^\circ\). Найдите \(\angle A\). Ответ дайте в градусах.

Рассмотрим картинку:


 

Т.к. равные хорды стягивают равные дуги, то меньшие полуокружности дуги \(\buildrel\smile\over{AB}\), \(\buildrel\smile\over{BC}\), \(\buildrel\smile\over{DE}\), \(\buildrel\smile\over{EA}\) равны:

\[\buildrel\smile\over{AB}=\buildrel\smile\over{BC}= \buildrel\smile\over{DE}=\buildrel\smile\over{EA}=\alpha.\]

Пусть \(\buildrel\smile\over{CD}=\beta\).

 

Следовательно, вписанный угол \[\angle CAE=\frac12\left(\alpha+\beta\right)=75^\circ. \qquad (1)\]

Т.к. градусная мера всей окружности равна \(360^\circ\), то

\[4\alpha+\beta=360^\circ \qquad (2)\]

Решая систему из уравнений \((1)\) и \((2)\), получаем, что \(\alpha=70^\circ, \beta=80^\circ\).

 

Следовательно, \(\angle A=\frac12\left(2\alpha+\beta\right)=110^\circ\).

Ответ: 110

Задание 28 #6046

Окружность проходит через вершины \(B\), \(C\) и \(D\) ромба \(ABCD\), причем точка \(A\) находится вне окружности и \(AD\) является касательной к окружности. \(K\) – точка пересечения отрезка \(AC\) и окружности. Найдите отношение \(CK\) к \(KA\).

Рассмотрим картинку:


 

Во-первых, т.к. окружность описана около треугольника \(BCD\), то ее центр \(O\) – точка пересечения серединных перпендикуляров к сторонам треугольника. Следовательно, \(O\) лежит на серединном перпендикуляре к \(BD\) – а это и есть \(CA\) по свойству ромба (диагонали взаимно перпендикулярны). Таким образом, \(CK\) – диаметр этой окружности.

 

Рассмотрим треугольники \(CDO\) и \(ADK\).


 

1) Т.к. \(\angle CDK\) опирается на диаметр \(CK\), то он равен \(90^\circ\). Т.к. \(AD\) – касательная к окружности, то угол между ней и радиусом \(OD\) равен \(90^\circ\). Заметим, что углы \(\angle CDK\) и \(\angle ODA\) имеют общую часть – угол \(ODK\). Следовательно, т.к. они равны, то равны и другие их части: \(\angle CDO=\angle ADK=\alpha\).

 

2) Т.к. треугольник \(CDO\) равнобедренный (\(CO=OD\) – радиусы), то \(\angle DCO=\alpha\). Т.к. треугольник \(CDA\) равнобедренный, то \(\angle DAK=\angle DCO=\alpha\).

 

3) Таким образом, по стороне и двум прилежащим к ней углам (\(CD=DA, \ \angle DCO=\angle CDO=\angle ADK=\angle DAK\)) треугольники \(CDO\) и \(ADK\) равны. Следовательно, \(KA=CO\).

 

Значит, \[\dfrac{CK}{KA}=\dfrac{2CO}{CO}=2.\]

Ответ: 2