Математика ЕГЭ
Русский язык ЕГЭ
Математика 5-7
Математика ОГЭ
Информатика
Физика
Обществознание
Кликните, чтобы открыть меню

18. Площади геометрических фигур

1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения
Задание 29 #6173

В треугольнике \(ABC\) точка \(H\) делит сторону \(AB\) в отношении \(\dfrac{2}3\), считая от вершины \(B\). Найдите площадь треугольника \(HBC\), если площадь треугольника \(ABC\) равна \(15\).


 

Треугольники \(ABC\) и \(HBC\) имеют общий угол \(B\), следовательно:

\[\dfrac{S_{HBC}}{S_{ABC}} = \dfrac{HB\cdot BC}{AB\cdot BC} = \dfrac{HB}{AB}.\]

Пусть \(HB = 2x\), \(AH = 3x\), учитывая то, что \(AB = HB + AH\), получаем:

\[\dfrac{HB}{AB} = \dfrac{2x}{2x+3x} = \dfrac{2}5 \quad\Rightarrow \quad S_{HBC} = S_{ABC} \cdot \dfrac{2}5 = 6.\]

Ответ: 6

Задание 30 #6174

В треугольнике \(ABC\) со сторонами \(BC = 6, AB = 4\) проведена биссектриса \(BD\). Высота \(DH\) треугольника \(DBC\) равна \(3\). Найдите площадь треугольника \(ABC\).



Биссектриса делит треугольник \(ABC\) на два треугольника, имеющие по равному углу, следовательно, их площади относятся как произведения сторон, образующих эти углы:

\[\dfrac{S_{ABD}}{S_{DBC}} = \dfrac{AB\cdot BD}{BC\cdot BD} = \dfrac{AB}{BC}\quad (*)\] Площадь треугольника \(BDC\) равна

\[S_{DBC} = \dfrac{1}2\cdot DH\cdot BC = \dfrac{1}2\cdot 3\cdot 6 = 9.\] Найдем площадь треугольника \(ABD\) из отношения \((*)\):

\[S_{ABD} = \dfrac{4}6\cdot S_{DBC} = \dfrac{4}6\cdot 9 = 6.\] Сложим площади треугольников \(ABD\) и \(DBC\) и получим площадь искомого треугольника \(ABC\):

\[S_{ABC} = S_{ABD} + S_{DBC} = 6 + 9 =15.\]

Ответ: 15

Задание 31 #6175

В прямоугольном треугольнике \(ABC\) проведена биссектриса \(AD\). Найдите площадь треугольника \(ABD\), если \(\angle C = 90^\circ , CD = 3, AB = 6\).



Т.к. \(\angle BAD = \angle DAC\), то площади треугольников \(ABD\) и \(ADC\) относятся друг к другу как произведения сторон, образующих равные углы:

\[\dfrac{S_{ABD}}{S_{ADC}} = \dfrac{AB\cdot AD}{AC\cdot AD} = \dfrac{AB}{AC}\]

\[S_{ADC} = \dfrac{1}2 \cdot AC\cdot CD \quad\Rightarrow\quad S_{ABD} = \dfrac{AB}{AC}\cdot \dfrac{1}2\cdot AC\cdot CD = \dfrac{1}2 \cdot AB\cdot CD= 9.\]

Ответ: 9

Задание 32 #6176

В прямоугольном треугольнике \(ABC\) построен отрезок \(AD\), причем \(BD = 4\), \(D\in BC\). Найдите площадь треугольника \(ABD\), если \(\angle C = 90^\circ , AC = 5\).



Так как \(AC\) перпендикулярна прямой \(BC\), то \(AC\) – высота тупоугольного треугольника \(ABD\), опущенная из вершины \(B\) на продолжение стороны \(BD\). Так как площадь треугольника равна половине произведения основания на высоту, проведенную к этому основанию, то \[S_{ABD}=\dfrac12\cdot BD\cdot AC=\dfrac12\cdot 4\cdot 5=10\]

Ответ: 10

Задание 33 #6177

В треугольнике \(KDA\) проведена медиана \(DB = 3\). Найдите площадь треугольника \(KDA\), если известно, что \(KD = 4, KA = 10\).



Медиана \(DB\) делит \(KA\) пополам \(\Rightarrow KB = 5\). Так как известны все стороны треугольника \(KDB\), найдем его площадь по формуле Герона: \[S_{KDB} = \sqrt{6\cdot(6 - 3)(6 - 4)(6 - 5)}=6.\] Медиана треугольника делит его на два равновеликих треугольника, то есть \(S_{KDB}=S_{ADB}\), следовательно,

\[S_{KDA} = 2\cdot S_{KDB} = 12.\]

Ответ: 12

Задание 34 #6178

В прямоугольном треугольнике \(ABC\) с прямым углом \(C\) проведена биссектриса \(BT\), причем \(AT = 15, TC = 12\). Найдите площадь треугольника \(ABT\).



По свойству биссектрисы: \[\dfrac{TC}{BC} = \dfrac{AT}{AB}\] Пусть \(BC = x, AB = y\), тогда: \[\dfrac{12}x = \dfrac{15}y\Rightarrow x = 0,8\cdot y.\] Из треугольника \(ABC\) имеем по теореме Пифагора: \(x^2+27^2 = y^2\Rightarrow 0,64\cdot y^2 + 27^2 = y^2\Rightarrow y = 45, x = 36.\) \[S_{ABT} = 0,5\cdot AT\cdot BC = 0,5\cdot 15\cdot 36 = 270.\]

Ответ: 270

Задание 35 #6179

Площадь равнобедренного треугольника \(ABC\) равна \(90\), боковая сторона равна \(10\sqrt{3}\). К основанию \(AB\) и стороне \(BC\) проведены высоты \(CP\) и \(AH\), пересекающиеся в точке \(D\). Найдите площадь треугольника \(CDH\).



Так как треугольник \(ABC\) равнобедренный, то \(CA = CB=10\sqrt3\), следовательно, \(S_{ABC} = 0,5\cdot CB\cdot AH = 90\quad\Rightarrow\quad AH = 6\sqrt{3}\).
Из треугольника \(HCA\) по теореме Пифагора имеем: \(CH = \sqrt{CA^2 - AH^2} = 8\sqrt{3}.\)
Так как \(CP\) — высота равнобедренного треугольника \(ABC\), проведенная к основанию \(AB\), то она также является биссектрисой и медианой. Тогда по свойству биссектрисы из \(\triangle HCA\): \[\dfrac{DH}{CH} = \dfrac{DA}{CA} \quad\Rightarrow \quad \dfrac{DH}{8\sqrt{3}} =\dfrac{(6\sqrt{3} - DH)}{10\sqrt{3}}\quad\Rightarrow \quad DH = \dfrac{8\sqrt{3}}3\] Следовательно, так как \(\triangle CDH\) прямоугольный, то \(S_{CDH} = 0,5\cdot CH\cdot DH = 32.\)

Ответ: 32