В треугольнике \(ABC\): \(\angle C = 90^{\circ}\), \(CM\) – медиана, \(AC = 4\), \(CM = 2,5\). Найдите периметр треугольника \(ABC\).
В прямоугольном треугольнике медиана, проведённая к гипотенузе, равна половине гипотенузы, тогда \(AB = 2,5 \cdot 2 = 5\). По теореме Пифагора: \(AB^2 = AC^2 + CB^2\), откуда находим \(CB = 3\). Периметр треугольника \(ABC\) равен \(3 + 4 + 5 = 12\).
Ответ: 12