Математика ЕГЭ
Русский язык ЕГЭ
Математика 5-7
Математика ОГЭ
Информатика
Физика
Обществознание
Темы отсутствуют
Кликните, чтобы открыть меню

16. Многоугольники. Базовые свойства

1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения

Прямоугольник и квадрат

Задание 1 #5851

Расстояние от точки пересечения диагоналей прямоугольника до прямой, содержащей его большую сторону, равно \(2,5\). Найдите меньшую сторону прямоугольника.


 

Рассмотрим прямоугольник \(ABCD\). Пусть \(O\) – точка пересечения диагоналей, \(OH=2,5\) – расстояние от точки \(O\) до большей стороны.
Т.к. диагонали прямоугольника равны и точкой пересечения делятся пополам, то \(BO=CO\). Следовательно, \(\triangle BOH=\triangle COH\) как прямоугольные по катету и гипотенузе. Следовательно, \(BH=CH\). Таким образом, \(OH\) – средняя линия в \(\triangle ABC\), следовательно, она равна половине \(AB\). Значит, \(AB=2\cdot 2,5=5\).

Ответ: 5

Задание 2 #5852

В прямоугольнике \(ABCD\) диагональ \(AC = 2\cdot CD\). Найдите разность \(\angle BAC - \angle CAD\). Ответ дайте в градусах.

Треугольник \(ACD\) – прямоугольный, причём в нём катет равен половине гипотенузы, значит этот катет лежит против угла в \(30^{\circ}\), то есть \(\angle CAD = 30^{\circ}\).

\(\angle BAC = 90^{\circ} - \angle CAD = 60^{\circ}\), тогда \(\angle BAC - \angle CAD = 60^{\circ} - 30^{\circ} = 30^{\circ}\).

Ответ: 30

Задание 3 #5853

\(O\) – точка пересечения диагоналей прямоугольника \(ABCD\), \(\angle OAD = 28^{\circ}\). Найдите \(\angle AOD\). Ответ дайте в градусах.

В прямоугольнике диагонали пересекаются, точкой пересечения делятся пополам и равны, тогда \(AO = OD\), следовательно, \(\angle ADO = \angle OAD = 28^{\circ}\), тогда \(\angle AOD = 180^{\circ} - 2\cdot 28^{\circ} = 124^{\circ}\).

Ответ: 124