Математика ЕГЭ
Русский язык ЕГЭ
Математика 5-7
Математика ОГЭ
Информатика
Физика
Обществознание
Темы отсутствуют
Кликните, чтобы открыть меню

17. Окружность

1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения

Теоремы, связанные с длинами отрезков

Задание 1 #6008

Из точки \(A\) вне окружности проведена касательная \(AB\) и секущая \(AD\), как показано на картинке.


 

Найдите длину отрезка \(CD\), если \(AC=5\), а длина отрезка касательной равна \(10\).

Т.к. квадрат отрезка касательной равен произведению секущей на ее внешнюю часть, то \[AB^2=AC\cdot AD=AC\cdot (AC+CD),\] откуда \[10^2=5\cdot (5+CD) \quad \Rightarrow \quad CD=15.\]

Ответ: 15

Задание 2 #6009

Из точки \(A\) вне окружности проведена касательная \(AB\) и секущая \(AD\), как показано на картинке.


 

Найдите длину отрезка \(AC\), если \(CD=14\), а \(AB=6\sqrt2\).

Т.к. квадрат отрезка касательной равен произведению секущей на ее внешнюю часть, то \[AB^2=AC\cdot AD=AC\cdot (AC+CD),\] откуда \[(6\sqrt2)^2=AC\cdot (AC+14) \quad \Rightarrow \quad AC^2+14AC-72=0 \quad \Rightarrow \quad AC=4 \text{ или } AC=-18\]

Т.к. длина отрезка – неотрицательное число, то \(AC=4\).

Ответ: 4

Задание 3 #6010

Диаметр \(AA_1\) окружности пересекает хорду \(BB_1\) под прямым углом в точке \(C\), причем делится этой точкой на отрезки длиной \(18\) и \(32\), считая от точки \(A\). Найдите \(BB_1\).

Рассмотрим картинку:


 

Проведем из центра окружности точки \(O\) радиус \(OB\). Т.к. весь диаметр равен \(18+32=50\), то радиус равен \(25\). Следовательно, \(OB=25, \ OC=25-18=7\).

 

Т.к. радиус, перпендикулярный хорде, делит ее пополам, то \(BC=CB_1\). Найдем \(BC\). Треугольник \(BOC\) – прямоугольный, следовательно, \[BC^2=BO^2-OC^2 \quad \Rightarrow \quad BC^2=25^2-7^2=24^2 \quad \Rightarrow \quad BC=24\]

Значит, \(BB_1=2BC=48\).

Ответ: 48

Задание 4 #6011

Из некоторой точки \(C\) на окружности к диаметру \(AB\) проведен перпендикуляр \(CH\), причем \(H\) разделила диаметр на отрезки длиной \(28\) и \(7\), считая от точки \(A\). Найдите длину отрезка \(CH\).

Рассмотрим картинку:


 

Т.к. угол \(ACB\) опирается на диаметр, то он прямой. Следовательно, треугольник \(ABC\) прямоугольный, и \(CH\) – высота, опущенная из вершины прямого угла. Следовательно, она делит треугольник \(ABC\) на два подобных треугольника \(ACH\) и \(BCH\). Значит:

\[\dfrac{AH}{CH}=\dfrac{CH}{HB} \quad \Rightarrow \quad CH^2=AH\cdot HB \quad \Rightarrow \quad CH=\sqrt{28\cdot 7}=14.\]

Ответ: 14

Задание 5 #6012

Из точки \(A\) вне окружности проведены две касательные \(AB\) и \(AC\). Через произвольную точку \(X\) на окружности проведена касательная к окружности, пересекающая отрезки \(AB\) и \(AC\) в точках \(M\) и \(N\) соответственно. Найдите угол \(MON\), если \(\angle BAC=32^\circ\). Ответ дайте в градусах.

Рассмотрим картинку (пусть \(B, C\) – точки касания):


 

Т.к. отрезки касательных, проведенные из одной точки, равны, то \(MB=MX\) и \(NC=NX\). Т.к. радиусы, проведенные в точку касания, перпендикулярны касательной, то \(\angle OCN=\angle OXN=\angle OXM=\angle OBM=90^\circ\). Таким образом, по двум катетам равны треугольники: \(\triangle OBM=\triangle OXM\) и \(\triangle OXN=\triangle OCN\).
Значит, \(\angle BOM=\angle XOM\) и \(\angle XON=\angle CON\).

 

Следовательно, \(\angle MON=\frac12 \angle BOC\).

 

Т.к. в четырехугольнике сумма углов равна \(360^\circ\), то в четырехугольнике \(ABOC\): \[\angle BOC=360^\circ-90^\circ-90^\circ-\angle A=180^\circ-\angle A.\]

Следовательно, \[\angle MON=\dfrac12\left(180^\circ-\angle A\right)=90^\circ-\dfrac12\angle A=90^\circ-\dfrac12\cdot 32^\circ=74^\circ.\]

Ответ: 74

Задание 6 #6013

Из точки \(A\) вне окружности проведены две касательные \(AB\) и \(AC\) (где \(B, C\) – точки касания). Через произвольную точку \(X\) на окружности проведена касательная к окружности, пересекающая отрезки \(AB\) и \(AC\) в точках \(M\) и \(N\) соответственно. Найдите периметр треугольника \(AMN\), если \(AB=10\).

Рассмотрим картинку:


 

Т.к. отрезки касательных, проведенные из одной точки, равны, то \(AB=AC=10\), \(MB=MX\) и \(NC=NX\).

 

Следовательно, периметр

 

\(P_{\triangle AMN}=AM+MN+AN=AM+(MX+XN)+AN=\)

 

\(=AM+(MB+NC)+AN=(AM+MB)+(NC+AN)=AB+AC=10+10=20.\)

Ответ: 20

Задание 7 #6014

В треугольнике \(ABC\): \(\angle C = 90^{\circ}\), \(AB = 10\), \(CO\) – медиана. Найдите длину \(CO\).

В прямоугольном треугольнике медиана, проведённая к гипотенузе, равна её половине. Покажем это:
Опишем около треугольника \(ABC\) окружность



\(\angle ACB = 90^{\circ}\) – вписанный, тогда он равен половине градусной меры дуги, на которую опирается, следовательно, градусная мера дуги \(AB\) равна \(180^{\circ}\), а значит, \(AB\) – диаметр и \(O\) – центр описанной около \(ABC\) окружности, тогда \(AO = OC\) как радиусы. \[OC = AO = 0,5 \cdot AB = 5.\]

Ответ: 5