Таня бросила камень вниз с обрыва. Она может приближенно рассчитать высоту над уровнем моря (в метрах), на которой находился камень в момент времени \(t\) секунд (\(t\) отсчитывается с момента броска) по формуле \(h = 1000 - 20t - 5t^2\). Какое по ее подсчетам наибольшее время после броска камень находился на высоте не менее, чем 520 метров над уровнем моря, если она не ошиблась? Ответ дайте в секундах.
Время \(t\), в течение которого камень находился на высоте не менее, чем 520 метров, удовлетворяет неравенству \[1000 - 20t - 5t^2
\geqslant 520\qquad\Leftrightarrow\qquad t^2 + 4t - 96 \leqslant
0.\] Решим это неравенство методом интервалов. Найдём корни уравнения \(t^2 + 4t - 96 = 0\): \[t_1 = 8, \qquad \qquad t_2 = -12,\] тогда:
то есть наибольшее время, в течение которого камень находился на высоте не менее, чем 520 метров, равно 8 секунд.
Ответ: 8