Математика ЕГЭ
Русский язык ЕГЭ
Математика 5-7
Математика ОГЭ
Информатика
Физика
Обществознание
Кликните, чтобы открыть меню

17. Окружность

1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения

Описанная окружность

Задание 1 #6046

Окружность проходит через вершины \(B\), \(C\) и \(D\) ромба \(ABCD\), причем точка \(A\) находится вне окружности и \(AD\) является касательной к окружности. \(K\) – точка пересечения отрезка \(AC\) и окружности. Найдите отношение \(CK\) к \(KA\).

Рассмотрим картинку:


 

Во-первых, т.к. окружность описана около треугольника \(BCD\), то ее центр \(O\) – точка пересечения серединных перпендикуляров к сторонам треугольника. Следовательно, \(O\) лежит на серединном перпендикуляре к \(BD\) – а это и есть \(CA\) по свойству ромба (диагонали взаимно перпендикулярны). Таким образом, \(CK\) – диаметр этой окружности.

 

Рассмотрим треугольники \(CDO\) и \(ADK\).


 

1) Т.к. \(\angle CDK\) опирается на диаметр \(CK\), то он равен \(90^\circ\). Т.к. \(AD\) – касательная к окружности, то угол между ней и радиусом \(OD\) равен \(90^\circ\). Заметим, что углы \(\angle CDK\) и \(\angle ODA\) имеют общую часть – угол \(ODK\). Следовательно, т.к. они равны, то равны и другие их части: \(\angle CDO=\angle ADK=\alpha\).

 

2) Т.к. треугольник \(CDO\) равнобедренный (\(CO=OD\) – радиусы), то \(\angle DCO=\alpha\). Т.к. треугольник \(CDA\) равнобедренный, то \(\angle DAK=\angle DCO=\alpha\).

 

3) Таким образом, по стороне и двум прилежащим к ней углам (\(CD=DA, \ \angle DCO=\angle CDO=\angle ADK=\angle DAK\)) треугольники \(CDO\) и \(ADK\) равны. Следовательно, \(KA=CO\).

 

Значит, \[\dfrac{CK}{KA}=\dfrac{2CO}{CO}=2.\]

Ответ: 2

Задание 2 #6047

Около треугольника \(ABC\) описана окружность с центром в точке \(O\). \(\angle BAO=15^\circ, \angle CBO=40^\circ\). Найдите \( \angle ACO\). Ответ дайте в градусах.

Рассмотрим картинку:


 

Т.к. треугольники \(AOB\), \(BOC\), \(COA\) – равнобедренные, то \(\angle OBA=15^\circ, \angle OCB=40^\circ\), \(\angle OCA=\angle OAC=\alpha\).

 

Т.к. сумма углов треугольника \(ABC\) равна \(180^\circ\), то \[(15^\circ+\alpha)+(\alpha+40^\circ)+(40^\circ+15^\circ)=180^\circ \quad \Rightarrow \quad 2\alpha=180^\circ-2(15^\circ+40^\circ)=70^\circ \quad \Rightarrow \quad \alpha=35^\circ.\]

Ответ: 35

Задание 3 #6048

Около треугольника \(ABC\) описана окружность с центром в точке \(O\). \(\angle BAO+\angle CBO=50^\circ\). Найдите \( \angle ACO\). Ответ дайте в градусах.

Рассмотрим картинку:


 

Т.к. треугольники \(AOB\), \(BOC\), \(COA\) – равнобедренные, то \(\angle OBA=\angle OAB=\beta\), \(\angle OCB=\angle OBC=\gamma\), \(\angle OCA=\angle OAC=\alpha\).
Значит, \(\beta+\gamma=50^\circ\).

 

Т.к. сумма углов треугольника \(ABC\) равна \(180^\circ\), то \[(\beta+\alpha)+(\alpha+\gamma)+(\gamma+\beta)=180^\circ \quad \Rightarrow \quad 2\alpha=180^\circ-2(\beta+\gamma)=80^\circ \quad \Rightarrow \quad \alpha=40^\circ.\]

Ответ: 40

Задание 4 #6049

Около треугольника \(ABC\) описана окружность с центром в точке \(O\). \(\angle BAO=20^\circ, \angle BCO=30^\circ\). Найдите \( \angle AOC\). Ответ дайте в градусах.

Рассмотрим картинку:


 

Т.к. треугольники \(AOB\), \(BOC\) – равнобедренные, то \(\angle OBA=\angle OAB=20^\circ\), \(\angle OBC=\angle OCB=30^\circ\). Следовательно, \(\angle B=20^\circ+30^\circ=50^\circ\).

 

Т.к. \(\angle AOC\) – центральный угол, опирающийся на ту же дугу \(AC\), что и вписанный \(\angle B\), то \(\angle AOC=2\angle B=100^\circ\).

Ответ: 100

Задание 5 #6050

В выпуклом четырехугольнике \(ABCD\) \(\angle ABD=\angle ACD\). Найдите \(\angle A-\angle B+\angle C-\angle D\). Ответ дайте в градусах.

Рассмотрим картинку:


 

По признаку около этого четырехугольника можно описать окружность. Следовательно, сумма двух противоположных его углов равна \(180^\circ\). Таким образом, \[\angle A-\angle B+\angle C-\angle D= (\angle A+\angle C)-(\angle B+\angle D)=180^\circ-180^\circ=0^\circ.\]

Ответ: 0

Задание 6 #6051

Во вписанном четырехугольнике \(LEGO\) стороны \(LE\) и \(GO\) равны. Найдите сумму углов \(\angle L\) и \(\angle E\). Ответ дайте в градусах.

Рассмотрим картинку:


 

Т.к. хорды \(LE\) и \(GO\) равны, то равны дуги \(\buildrel\smile\over{LE}\) и \(\buildrel\smile\over{GO}\). Следовательно, вписанные углы, опирающиеся на эти дуги, будут тоже равны:

\[\angle LOE=\angle LGE=\angle OLG=\angle OEG\]

Таким образом, \(LEGO\) – трапеция (\(\angle LOE=\angle OEG\) – накрест лежащие при прямых \(EG\) и \(LO\) и секущей \(EO\)). Значит, \(\angle L+\angle E=180^\circ\) как сумма односторонних углов при параллельных прямых.

Ответ: 180

Задание 7 #6052

Во вписанном четырехугольнике \(ABCD\) противоположные стороны попарно равны \(5\) и \(12\). Найдите радиус описанной около этого четырехугольника окружности.

Рассмотрим картинку:


 

Т.к. хорды \(AB\) и \(CD\) равны, то равны дуги \(\buildrel\smile\over{AB}\) и \(\buildrel\smile\over{CD}\). Следовательно, вписанные углы, опирающиеся на эти дуги, будут тоже равны:

\[\angle ADB=\angle ACB=\angle DAC=\angle DBC\]

Таким образом, \(\angle ADB=\angle DBC\) – накрест лежащие при прямых \(AD\) и \(BC\) и секущей \(BD\), следовательно, \(AD\parallel BC\).

 

Аналогичным образом доказывается, что \(AB\parallel CD\).

 

Таким образом, \(ABCD\) – параллелограмм. Т.к. он вписанный, то это – прямоугольник.

 

В прямоугольнике центр описанной окружности лежит на пересечении диагоналей. Следовательно, по теореме Пифагора \(AC=\sqrt{5^2+12^2}=13\), а \(R=\frac12AC=6,5\).

 

Замечание.

Можно было доказать, что \(ABCD\) – прямоугольник, другим способом:

\(\triangle ABD=\triangle CBD\) по трем сторонам. Следовательно, \(\angle A=\angle C\). Но т.к. четырехугольник вписанный, то сумма противоположных углов равна \(180^\circ\), следовательно, \(\angle A+\angle C=180^\circ\). Отсюда следует, что \(\angle A=\angle C=90^\circ\). Аналогично \(\angle B=\angle D=90^\circ\). По признаку четырехугольник, у которого все углы прямые, является прямоугольником.

Ответ: 6,5