Математика ЕГЭ
Русский язык ЕГЭ
Математика 5-7
Математика ОГЭ
Информатика
Физика
Обществознание
Кликните, чтобы открыть меню

16. Многоугольники. Базовые свойства

1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения

Равнобедренный треугольник

Задание 1 #5821

В треугольнике \(ABC\): \(\angle C = 70^{\circ}\), \(AB = BC\). Найдите \(\angle B\). Ответ дайте в градусах.

В равнобедренном треугольнике углы при основании равны, тогда \(\angle A = \angle C = 70^{\circ}\). Так как у любого треугольника сумма углов равна \(180^{\circ}\), то \(\angle B = 180^{\circ} - 70^{\circ} - 70^{\circ} = 40^{\circ}\).

Ответ: 40

Задание 2 #5822

В треугольнике \(ABC\): \(\angle A = 47^{\circ}\), \(AB = BC\). Найдите \(\angle B\). Ответ дайте в градусах.

В равнобедренном треугольнике углы при основании равны, тогда \(\angle C = \angle A = 47^{\circ}\). Так как у любого треугольника сумма углов равна \(180^{\circ}\), то \(\angle B = 180^{\circ} - 47^{\circ} - 47^{\circ} = 86^{\circ}\).

Ответ: 86

Задание 3 #5823

В треугольнике \(ABC\): \(\angle C = 36^{\circ}\), \(AB = BC\). Найдите \(\angle B\). Ответ дайте в градусах.

В равнобедренном треугольнике углы при основании равны, тогда \(\angle A = \angle C = 36^{\circ}\). Так как у любого треугольника сумма углов равна \(180^{\circ}\), то \(\angle B = 180^{\circ} - 36^{\circ} - 36^{\circ} = 108^{\circ}\).

Ответ: 108

Задание 4 #5824

В треугольнике \(ABC\): \(\angle B = 38^{\circ}\), \(AB = BC\). Найдите \(\angle C\). Ответ дайте в градусах.

В равнобедренном треугольнике углы при основании равны, тогда \(\angle A = \angle C\). Так как у любого треугольника сумма углов равна \(180^{\circ}\), то \(180^{\circ} = 38^{\circ} + \angle A + \angle C = 38^{\circ} + 2\cdot \angle A\), откуда \(2\cdot \angle A = 142^{\circ}\), тогда \(\angle A = 71^{\circ}\).

Ответ: 71

Задание 5 #5825

В треугольнике \(ABC\): \(\angle B = 73^{\circ}\), \(AB = BC\). Найдите \(\angle C\). Ответ дайте в градусах.

В равнобедренном треугольнике углы при основании равны, тогда \(\angle A = \angle C\). Так как у любого треугольника сумма углов равна \(180^{\circ}\), то \(180^{\circ} = 73^{\circ} + \angle A + \angle C = 73^{\circ} + 2\cdot \angle A\), откуда \(2\cdot \angle A = 107^{\circ}\), тогда \(\angle A = 53,5^{\circ}\).

Ответ: 53,5

Задание 6 #5826

В треугольнике \(ABC\): \(\angle B = 32^{\circ}\), \(AB = BC\). Найдите внешний угол при вершине \(C\). Ответ дайте в градусах.

В равнобедренном треугольнике углы при основании равны, тогда \(\angle A = \angle ACB\). Так как у любого треугольника сумма углов равна \(180^{\circ}\), то \(180^{\circ} = 32^{\circ} + \angle A + \angle C = 32^{\circ} + 2\angle A\), откуда \(2\angle A = 148^{\circ}\), тогда \(\angle A = 74^{\circ}\).

 

По теореме о внешнем угле треугольника \(C_{\text{внеш}} = \angle A + \angle B\), тогда искомый угол равен \(32^{\circ} + 74^{\circ} = 106^{\circ}\).

Ответ: 106

Задание 7 #5827

В треугольнике \(ABC\): \(\angle B = 50^{\circ}\), \(AB = BC\). Найдите внешний угол при вершине \(A\). Ответ дайте в градусах.

В равнобедренном треугольнике углы при основании равны, тогда \(\angle BAC = \angle C\). Так как у любого треугольника сумма углов равна \(180^{\circ}\), то \(180^{\circ} = 50^{\circ} + \angle A + \angle C = 50^{\circ} + 2\angle C\), откуда \(2\angle C = 130^{\circ}\), тогда \(\angle C = 65^{\circ}\).

 

По теореме о внешнем угле треугольника \(A_{\text{внеш}} = \angle B + \angle C\), тогда искомый угол равен \(50^{\circ} + 65^{\circ} = 115^{\circ}\).

Ответ: 115