Математика ЕГЭ
Русский язык ЕГЭ
Математика 5-7
Математика ОГЭ
Информатика
Физика
Обществознание
Темы отсутствуют
Кликните, чтобы открыть меню

22. Текстовые задачи

1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения

Задачи на смеси, сплавы и растворы (страница 2)

Задание 8 #6257

Во сколько раз больше должен быть объём \(20\)-процентного раствора кислоты, чем объём \(14\)-процентного раствора той же кислоты, чтобы при смешивании получить \(18\)-процентный раствор?

Пусть объём \(20\)-процентного раствора кислоты равен \(x\) литров, а объём \(14\)-процентного раствора равен \(y\) литров, тогда требуется найти значение величины \(\dfrac{x}{y}\) при условии \[0,2x + 0,14y = 0,18(x + y) \qquad\Leftrightarrow\qquad \dfrac{x}{y} = 2\,,\] таким образом, ответ: \(2\).

Ответ: 2

Задание 9 #6258

Половину объёма огурца когда-то занимала вода, потом этот огурец подсох и вода стала занимать лишь \(20\%\) объёма огурца. Во сколько раз уменьшился объём этого огурца?

Пусть первоначальный объём огурца составлял \(V_0\) литров, а конечный объём \(V_1\) литров. Так как объём сухого вещества не менялся, то \[0,5V_0 = 0,8V_1\,,\] откуда находим \[\dfrac{V_0}{V_1} = 1,6\,,\] следовательно, объём огурца уменьшился в \(1,6\) раз.

Ответ: 1,6

Задание 10 #6259

Азат смешал \(10\)-процентный, \(20\)-процентный и \(30\)-процентный растворы одной и той же кислоты и получил \(2\) литра \(20\)-процентного раствора. На сколько литров больше было смешано \(10\)-процентного раствора, чем \(30\)-процентного?

Пусть у Азата было \(x\) литров \(10\)-процентного раствора, \(y\) литров \(20\)-процентного раствора и \(z\) литров \(30\)-процентного раствора, тогда \[0,1x + 0,2y + 0,3z = 0,2(x + y + z)\qquad\Leftrightarrow\qquad 0,1z = 0,1x \qquad\Leftrightarrow\qquad x = z\,,\] то есть \(10\)-процентного раствора было столько же, сколько и \(30\)-процентного, следовательно, ответ: \(0\).

Ответ: 0

Задание 11 #6260

В лаборатории смешали \(10\)-процентный, \(20\)-процентный и \(30\)-процентный растворы одной и той же кислоты, в результате чего было получено \(3\) литра \(18\)-процентной кислоты. Какой объём смеси получился бы, если бы вместо этого смешали \(10\)-процентную кислоту в объёме, в два раза большем, чем её было изначально, с \(20\)-процентной кислотой, взятой в том же объёме, что и изначально? Ответ дайте в литрах.

Пусть изначально было \(x\) литров \(10\)-процентного раствора, \(y\) литров \(20\)-процентного раствора и \(z\) литров \(30\)-процентного раствора, тогда искомая величина есть \(2x + y\). При этом \[\begin{cases} 0,1x + 0,2y + 0,3z = 0,18(x + y + z)\\ x + y + z = 3 \end{cases} \quad\Leftrightarrow\quad \begin{cases} 0,1x + 0,2y + 0,3(3 - x - y) = 0,54\\ z = 3 - x - y \end{cases}\] из первого уравнения последней системы находим: \[2x + y = 3,6\,.\] Таким образом, ответ: \(3,6\).

Ответ: 3,6

Задание 12 #6261

У Риты было два наполовину заполненных \(10\)-литровых ведра: одно с краской, а другое с водой. Рита взяла и перелила из ведра с водой в ведро с краской ровно \(1\) литр (при помощи ковша объёмом \(1\) литр). Затем, немного подумав, она перелила из ведра, которое изначально было с краской, литр в ведро с водой. Вот только она не помнит, перемешивала ли она содержимое ведра, которое изначально было с краской, прежде чем перелить из него литр. Найдите разность между концентрацией воды в ведре с краской и концентрацией краски в ведре с водой.

Попробуем ответить на вопрос, откуда в ведре с краской вода: это вода, которая была перелита в первый раз, но не ушла при втором переливании. При втором переливании именно её место в ковше заняла краска.

Попробуем ответить на вопрос, откуда в ведре с водой краска: это краска, которая была перелита во второй раз, то есть это та самая краска, которая заняла место навсегда оставшейся в ведре с краской воды, следовательно, объём краски в ведре с водой равен объёму воды в ведре с краской. Так как объёмы содержимого вёдер одинаковы, то и соответствующие концентрации одинаковы, тогда ответ: \(0\).

Ответ: 0

Задание 13 #6262

Смешав \(25\)-процентный и \(95\)-процентный растворы кислоты и добавив \(20\) кг чистой воды, получили \(40\)-процентный раствор кислоты. Если бы вместо \(20\) кг воды добавили \(20\) кг \(30\)-процентного раствора той же кислоты, то получили бы \(50\)-процентный раствор кислоты. Сколько килограммов \(25\)-процентного раствора использовали для получения смеси?

Заметим, что вода – это раствор, не содержащий кислоту, то есть содержащий \(0\%\) кислоты.
Пусть \(x\) кг – масса раствора с \(25\)-процентным содержанием кислоты, \(y\) кг – масса раствора с \(95\)-процентным содержанием кислоты. Составим схему, описывающую получение \(40\)-процентного раствора:


 

Заметим, что количество кислоты во всех трех растворах равно количеству кислоты в получившемся растворе. Найдем количество кислоты в первом растворе.
Если раствор весит \(x\) кг, а в нем \(25\%\) кислоты, то в килограммах в нем \(\dfrac{25}{100}\cdot x\) кислоты.

 

Таким же образом можно посчитать количество кислоты в остальных растворах. Получим первое уравнение:

\[\dfrac{25}{100}\cdot x+\dfrac{95}{100}\cdot y+ \dfrac{0}{100}\cdot 20=\dfrac{40}{100}\cdot (x+y+20)\]

Аналогично составим схему, описывающую получение \(50\)-процентного раствора:


 

Значит, уравнение, описывающее эту ситуацию, будет выглядеть так:

\[\dfrac{25}{100}\cdot x+\dfrac{95}{100}\cdot y+ \dfrac{30}{100}\cdot 20=\dfrac{50}{100}\cdot (x+y+20)\]

Таким образом, решив систему из полученных двух уравнений, найдем \(x\). Для этого можно умножить оба уравнения на \(100\), чтобы сделать их проще на вид:

\[\begin{cases} 25x+95y+0=40(x+y+20)\\ 25x+95y+30\cdot 20=50(x+y+20) \end{cases}\]

Вычтем из второго уравнения первое и получим новую систему:

\[\begin{aligned} &\begin{cases} 25x+95y=40(x+y+20)\\ 30\cdot 20=10(x+y+20) \end{cases} \quad \Rightarrow \quad \begin{cases} 5x+19y=8(x+y+20)\\ y=40-x \end{cases} \quad \Rightarrow \\[2ex] \Rightarrow \quad &\begin{cases} 3x-11(40-x)+160=0\\ y=40-x \end{cases} \quad \Rightarrow \quad \begin{cases} x=20\\y=20\end{cases} \end{aligned}\]

Таким образом, раствора с \(25\%\) кислоты было \(20\) кг.

Ответ: 20

Задание 14 #6263

Смешав \(30\)-процентный и \(90\)-процентный растворы кислоты и добавив \(10\) кг чистой воды, получили \(42\)-процентный раствор кислоты. Если бы вместо \(10\) кг воды добавили \(10\) кг \(50\)-процентного раствора той же кислоты, то получили бы \(52\)-процентный раствор кислоты. Сколько килограммов \(30\)-процентного раствора использовали для получения смеси?

Заметим, что вода – это раствор, не содержащий кислоту, то есть содержащий \(0\%\) кислоты.
Пусть \(x\) кг – масса раствора с \(30\)-процентным содержанием кислоты, \(y\) кг – масса раствора с \(90\)-процентным содержанием кислоты. Составим схему, описывающую получение \(42\)-процентного раствора:


 

Заметим, что количество кислоты во всех трех растворах равно количеству кислоты в получившемся растворе. Найдем количество кислоты в первом растворе.
Если раствор весит \(x\) кг, а в нем \(30\%\) кислоты, то в килограммах в нем \(\dfrac{30}{100}\cdot x\) кислоты.

 

Таким же образом можно посчитать количество кислоты в остальных растворах. Получим первое уравнение:

\[\dfrac{30}{100}\cdot x+\dfrac{90}{100}\cdot y+ \dfrac{0}{100}\cdot 10=\dfrac{42}{100}\cdot (x+y+10)\]

Аналогично составим схему, описывающую получение \(50\)-процентного раствора:


 

Значит, уравнение, описывающее эту ситуацию, будет выглядеть так:

\[\dfrac{30}{100}\cdot x+\dfrac{90}{100}\cdot y+ \dfrac{50}{100}\cdot 10=\dfrac{52}{100}\cdot (x+y+10)\]

Таким образом, решив систему из полученных двух уравнений, найдем \(x\). Для этого можно умножить оба уравнения на \(100\), чтобы сделать их проще на вид:

\[\begin{cases} 30x+90y+0=42(x+y+10)\\ 30x+90y+50\cdot 10=52(x+y+10) \end{cases}\]

Данная система равносильна системе

\[\begin{cases} 4y-x=35\\ 19y-11x=10 \end{cases} \quad \Rightarrow \quad \begin{cases} x=25\\y=15 \end{cases}\]

Таким образом, раствора с \(30\%\) кислоты было \(25\) кг.

Ответ: 25