Математика ЕГЭ
Русский язык ЕГЭ
Математика 5-7
Математика ОГЭ
Информатика
Физика
Обществознание
Кликните, чтобы открыть меню

10. Графики функций

1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения

Квадратичная функция (страница 3)

Задание 15 #5201

На рисунке изображены графики функций вида \(y=ax^2+bx+c\). Установите соответствие между графиками и знаками коэффициентов \(a, c\).

 

ГРАФИКИ:


 

КОЭФФИЦИЕНТЫ:

 

1) \(a>0, c>0\qquad \) 2) \(a>0, c<0\qquad \) 3) \(a<0, c<0\)  

В таблице под каждой буквой укажите соответствующий номер.  

Ответ: \(\begin{array}{|c|c|c|} \hline \text{А} & \text{Б} & \text{В} \\ \hline && \\ \hline \end{array}\)

Если ветви параболы направлены вверх, то \(a>0\), вниз – то \(a<0\). У параболы А ветви направлены вниз, следовательно, А – 3.
Коэффициент \(c\) отвечает за ординату точки пересечения параболы с осью \(Oy\) (то есть любая парабола вида \(y=ax^2+bx+c\) проходит через точку \(A(0;c)\)). (Действительно, если подставить в \(y=ax^2+bx+c\) вместо \(x=0\), то получим \(y=0+0+c=c\).)
Парабола Б пересекает ось \(Oy\) на положительной части, то есть \(c>0\). Следовательно, Б – 1. Тогда В – 2.

Ответ: \(\begin{array}{|c|c|c|} \hline \text{А} & \text{Б} & \text{В} \\ \hline 3&1&2 \\ \hline \end{array}\)

 

В ответ запишем 312.

Ответ: 312

Задание 16 #5202

Найдите значение \(c\) по графику функции \(y=ax^2+bx+c\), изображенному на рисунке.

Коэффициент \(c\) отвечает за ординату точки пересечения параболы с осью \(Oy\) (то есть любая парабола вида \(y=ax^2+bx+c\) проходит через точку \(A(0;c)\)). (Действительно, если подставить в \(y=ax^2+bx+c\) вместо \(x=0\), то получим \(y=0+0+c=c\).)
Данная парабола пересекает ось \(Oy\) в точке \(y=-1\). Следовательно, \(c=-1\).

Ответ: -1

Задание 17 #5203

Найдите знак \(ab\) по графику функции \(y=ax^2+bx+c\), изображенному на рисунке.



В ответе укажите \(1\), если \(ab>0\), и \(-1\), если \(ab<0\).

Абсцисса вершины параболы \(y=ax^2+bx+c\) ищется по формуле \(x_0=\dfrac{-b}{2a}\). Следовательно, если \(x_0>0\), то \(\frac ba<0\), и наоборот. На нашем рисунке у параболы \(x_0>0\), следовательно, \(\frac ba<0\), откуда также следует, что и \(ab<0\). Тогда ответ \(-1\).

Ответ: -1

Задание 18 #5204

Найдите значение \(a\) по графику функции \(y=ax^2+bx+c\), изображенному на рисунке.

Заметим, что парабола проходит через точки: \(A(-1;1)\), \(B(-2;-3)\), \(C(-3; -5)\).



Следовательно, можно составить систему: \[\begin{cases} 1=a-b+c\\ -3=4a-2b+c\\ -5=9a-3b+c \end{cases}\] Вычтем из второго уравнения первое, из третьего первое и получим новую систему: \[\begin{cases} -4=3a-b\\ -6=8a-2b \end{cases} \quad\Rightarrow\quad \begin{cases} 8=-6a+2b\\ -6=8a-2b \end{cases}\] Сложим два полученных уравнения, тогда \(2=2a\), откуда \(a=1\).

Ответ: 1

Задание 19 #5205

Найдите значение \(a\) по графику функции \(y=ax^2+bx+c\), изображенному на рисунке.

Из рисунка видно, что абсцисса вершины параболы равна \(x_0=-1\). Следовательно, \(-\frac b{2a}=-1\), откуда \(b=2a\) (*).
Ордината вершины параболы равна \(y_0=-3\), следовательно, \(-3=a\cdot (-1)^2+b\cdot (-1)+c\), откуда \(-3=a-b+c\) (**).
Так как парабола пересекает ось \(Oy\) в точке \(y=-1\), то есть проходит через точку \((0;-1)\), то \(-1=a\cdot 0^2+b\cdot 0+c\), откуда \(c=-1\).
(Коэффициент \(c\) отвечает за ординату точки пересечения параболы с осью \(Oy\) (то есть любая парабола вида \(y=ax^2+bx+c\) проходит через точку \(A(0;c)\)). Действительно, если подставить в \(y=ax^2+bx+c\) вместо \(x=0\), то получим \(y=0+0+c=c\).)
Подставляя в (**) \(c=-1\), получим \(-3=a-b-1\). Отсюда выразим \(a=b-2\) и подставим в \(b=2a\): \(b=2b-4\), откуда \(b=4\), \(a=2\).

Ответ: 2