Математика ЕГЭ
Русский язык ЕГЭ
Математика 5-7
Математика ОГЭ
Информатика
Физика
Обществознание
Кликните, чтобы открыть меню

17. Окружность

1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения

Вписанная окружность (страница 3)

Задание 15 #6032

Три стороны описанного около окружности четырехугольника относятся (в последовательном порядке) как \(2:3:6\). Найдите большую сторону этого четырехугольника, если известно, что его периметр равен \(54\).



Рассмотрим рисунок. Так как четырехугольник описан около окружности, то суммы его противоположных сторон равны. Следовательно, четвертая сторона равна \((2x+6x)-3x=5x\). Тогда можно составить уравнение: \[2x+3x+6x+5x=54\quad\Leftrightarrow\quad 6x=20,25\] (большая сторона равна \(6x\))

Ответ: 20,25

Задание 16 #6031

К окружности, вписанной в треугольник \(ABC\), проведены три касательные, параллельные сторонам треугольника. Периметры отсеченных треугольников равны \(5, 6\) и \(7\). Найдите периметр треугольника \(ABC\).



Рассмотрим рисунок. Пусть \(A_1, B_1, C_1\) – точки касания сторон \(\triangle ABC\) с окружностью. \(A', B', C'\) – точки на окружности, через которые проведены касательные параллельно сторонам треугольника. Получились треугольники \(AMN, BLK, CPR\). Пусть \(P_{AMN}=5, P_{BLK}=6, P_{CPR}=7\).
Так как отрезки касательных, проведенных из одной точки к окружности, равны, то \(MA'=MC_1, NA'=NB_1\). Следовательно, \[P_{AMN}=AM+MA'+NA'+AN=AM+MC_1+NB_1+AN=AC_1+AB_1=5\] Аналогично для других треугольников: \[\begin{aligned} &P_{BLK}=BC_1+BA_1=6\\ &P_{CPR}=CA_1+CB_1=7 \end{aligned}\] Следовательно, \[P_{ABC}=(AC_1+AB_1)+(BC_1+BA_1)+(CA_1+CB_1)=5+6+7=18.\]

Ответ: 18

Задание 17 #6030

В ромб со стороной \(8\) вписана окружность. Найдите радиус этой окружности, если площадь ромба равна \(10\).

Пусть дан ромб \(ABCD\), \(AB=8\), \(O\) – центр окружности, вписанной в этот ромб. Т.к. центр окружности, вписанной в многоугольник, лежит на пересечении биссектрис его углов, то \(O\) – точка пересечения диагоналей ромба (т.к. они являются биссектрисами углов ромба). Пусть \(K\) – точка касания окружности со стороной \(AB\). Тогда \(OK=r\) – радиус окружности.


 

Рассмотрим треугольники \(OKA\) и \(OBA\). Они подобны по двум углам. Следовательно, \[\dfrac{OK}{OB}=\dfrac{OA}{AB} \quad \Rightarrow \quad r=OK=\dfrac{OA\cdot OB}{AB}\]

Т.к. площадь ромба равна полупроизведению диагоналей, то \(S=\frac12\cdot AC\cdot BD=\frac12\cdot 2\,OA\cdot 2\,OB=2\,OA\cdot OB=10\). Отсюда \(OA\cdot OB=5\). Следовательно,

\[r=\dfrac58=0,625.\]

Ответ: 0,625

Задание 18 #6029

Около окружности, радиус которой равен \(4\), описан прямоугольный треугольник, гипотенуза которого равна \(20\). Найдите периметр этого треугольника.

Рассмотрим прямоугольный треугольник \(ABC\) (\(\angle C=90^\circ\)), \(AB=20\). Пусть \(O\) – центр вписанной в него окружности. Пусть также \(A_1, B_1, C_1\) – точки касания на сторонах \(BC, AC, AB\) соответственно.


 

Т.к. отрезки касательных, проведенных из одной точки к окружности, равны, то \[AC_1=AB_1=x; \qquad BC_1=BA_1=y; \qquad CA_1=CB_1.\]

Заметим также, что радиусы \(OB_1\) и \(OA_1\) перпендикулярны \(AC\) и \(BC\) соответственно (как радиусы, проведенные в точку касания). Следовательно, \(CB_1OA_1\) – прямоугольник (четырехугольник, имеющий три прямых угла). Но т.к. его смежные стороны равны, то это – квадрат. Следовательно, \(CA_1=CB_1=4\).

 

Тогда периметр треугольника равен:

\[AB+BC+CA=(x+y)+(y+4)+(4+x)=2(x+y)+4+4=2\cdot 20+8=48.\]

Ответ: 48

Задание 19 #6028

Окружность вписана в угол \(B\), равный \(90^\circ\), причем \(A,C\) – точки касания окружности со сторонами этого угла. Найдите \(AC\), если радиус этой окружности равен \(5\sqrt2\).

Пусть \(O\) – центр окружности.


 

\(OA=5\sqrt2\) – радиус окружности, причем \(OA\perp BA\) (т.к. \(BA\) – касательная, а радиус, проведенный в точку касания, перпендикулярен касательной).

 

Т.к. окружность вписана в угол, то ее центр лежит на биссектрисе этого угла, то есть \(\angle ABO=45^\circ\). Тогда прямоугольный \(\triangle ABO\) является равнобедренным, то есть \(AB=OA=5\sqrt2\). Т.к. отрезки касательных, проведенных из одной точки к окружности, равны, то \(BC=AB=5\sqrt2\). Следовательно, по теореме Пифагора

\[AC=\sqrt{AB^2+BC^2}=\sqrt{2AB^2}=AB\cdot \sqrt2=5\sqrt2\cdot \sqrt2=10.\]

Ответ: 10

Задание 20 #6027

Окружность вписана в угол \(B\), равный \(90^\circ\), причем \(A,C\) – точки касания окружности со сторонами этого угла. Найдите площадь треугольника \(ABC\), если радиус этой окружности равен \(10\sqrt2\).

Пусть \(O\) – центр окружности.


 

\(OA=10\sqrt2\) – радиус окружности, причем \(OA\perp BA\) (т.к. \(BA\) – касательная, а радиус, проведенный в точку касания, перпендикулярен касательной).

 

Т.к. окружность вписана в угол, то ее центр лежит на биссектрисе этого угла, то есть \(\angle ABO=45^\circ\). Тогда прямоугольный \(\triangle ABO\) является равнобедренным, то есть \(AB=OA=10\sqrt2\). Т.к. отрезки касательных, проведенных из одной точки к окружности, равны, то \(BC=AB=10\sqrt2\). Следовательно, площадь прямоугольного треугольника \(ABC\) равна

\[S_{\triangle ABC}=\dfrac12\cdot AB\cdot BC=\dfrac12\cdot 10\sqrt2\cdot 10\sqrt2= 100.\]

Ответ: 100

Задание 21 #6026

Окружность вписана в угол \(B\), равный \(90^\circ\). Найдите расстояние от вершины угла до центра этой окружности, если радиус этой окружности равен \(\sqrt2\).

Обозначим одну из точек касания окружности и сторон угла за \(A\). Пусть также \(O\) – центр окружности. То есть необходимо найти \(OB\).


 

\(OA=\sqrt2\) – радиус окружности, причем \(OA\perp BA\) (т.к. \(BA\) – касательная, а радиус, проведенный в точку касания, перпендикулярен касательной).

 

Т.к. окружность вписана в угол, то ее центр лежит на биссектрисе этого угла, то есть \(\angle ABO=45^\circ\). Тогда прямоугольный \(\triangle ABO\) является равнобедренным, то есть \(AB=OA=\sqrt2\). По теореме Пифагора:

\[OB=\sqrt{OA^2+AB^2}=\sqrt{\sqrt2^{\,2}+\sqrt2^{\,2}}=2.\]

Ответ: 2