Математика ЕГЭ
Русский язык ЕГЭ
Математика 5-7
Математика ОГЭ
Информатика
Физика
Обществознание
Темы отсутствуют
Кликните, чтобы открыть меню

17. Окружность

1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения

Описанная окружность (страница 5)

Задание 29 #6074

Боковые стороны равнобедренного треугольника равны \(40\), основание равно \(48\). Найдите радиус окружности, описанной около этого треугольника.

1 способ.

 

Пусть \(AC=BC\). Проведем \(CH\perp AB\).



Тогда \(CH\) также является и медианой, следовательно, \(AH=0,5AB=24\). Тогда \(\cos\angle A=AH:AC=24:40=3:5\). Следовательно, \[\sin\angle A=\sqrt{1-\cos^2\angle A}=\sqrt{1-\dfrac9{25}}=\dfrac45\] По теореме синусов \[\dfrac{BC}{\sin\angle A}=2R\quad\Rightarrow\quad R=\dfrac12\cdot \dfrac{40}{\frac45}=25\]

2 способ.

 

Если \(R\) – радиус описанной окружности, то верна формула \[R=\dfrac{AB\cdot BC\cdot AC}{4S_{ABC}}\] Найдем площадь треугольника по формуле Герона (полупериметр \(p=64\)): \[S_{ABC}=\sqrt{64\cdot (64-40)(64-40)(64-48)}=8\cdot 24\cdot 4\] Тогда \[R=\dfrac{40\cdot 40\cdot 48}{4\cdot 8\cdot 24\cdot 4}=25\]

Ответ: 25

Задание 30 #6075

Основания равнобедренной трапеции равны \(8\) и \(6\). Радиус описанной окружности равен \(5\). Найдите высоту трапеции.

Пусть \(O\) – центр окружности. Проведем радиусы \(OA, OB, OC, OD\). Пусть \(OH\perp BC, OK\perp AD\).



Так как \(BC\parallel AD\) и \(OH\perp BC, OK\perp AD\), то точки \(H, O, K\) лежат на одной прямой. Следовательно, \(HK\) – высота трапеции.
Рассмотрим \(\triangle BCO\). По формуле Герона его площадь равна \(S_{BOC}=\sqrt{8\cdot 2\cdot 3\cdot 3}=12\). С другой стороны, \(S_{BCO}=0,5BC\cdot OH\), откуда \[12=0,5BC\cdot OH\quad\Rightarrow\quad OH=4\] Рассмотрим \(\triangle ADO\). Аналогично ищем \(S_{ADO}=12\) и \(S_{ADO}=0,5AD\cdot OK\), откуда \(OK=3\). Следовательно, \(HK=4+3=7\).

Ответ: 7

Задание 31 #6076

Два угла вписанного в окружность четырехугольника равны \(82^\circ\) и \(58^\circ\). Найдите больший из оставшихся углов. Ответ дайте в градусах.

Так как четырехугольник вписан в окружность, то сумма его противоположных углов равна \(180^\circ\). Так как \(82^\circ+58^\circ\ne 180^\circ\), то нам даны градусные меры не противоположных углов. Следовательно, нам даны градусные меры односторонних углов. Допустим \(\angle A=58^\circ\), \(\angle D=82^\circ\). Тогда наибольшим из оставшихся углов будет \(\angle C=180^\circ-\angle A=180^\circ-58^\circ=122^\circ\).

Ответ: 122

Задание 32 #6077

Угол между двумя соседними сторонами правильного многоугольника, вписанного в окружность, равен \(108^\circ\). Найдите число вершин многоугольника.

1 способ.
Рассмотрим чертеж:



Пусть \(O\) – центр окружности, \(A, B, C\) – три последовательные вершины правильного многоугольника. Тогда \(\angle ABC=108^\circ\).
Заметим, что правильный многоугольник не может иметь 3 или 4 вершины, так как в этом случае это будет правильный треугольник или квадрат, а у этих фигур угол между соседними сторонами равен \(60^\circ\) и \(90^\circ\) соответственно.
Проведем \(OA, OB, OC\) – радиусы. Так как \(AB=BC\), то \(\triangle AOB=\triangle BOC\). К тому же эти треугольники равнобедренные (\(AB\) и \(BC\) их основания), следовательно, \(\angle ABO=\angle CBO=0,5\cdot 108^\circ=54^\circ\). Отсюда \(\angle AOB=180^\circ-2\cdot 54^\circ=72^\circ\).
Значит, дуга \(AB\) равна \(72^\circ\). Так как равные хорды стягивают равные дуги, а все стороны многоугольника равны (он правильный), то \(n\) вершин многоугольника разбивают окружность на \(n\) дуг, градусные меры которых равны \(72^\circ\). То есть \(72^\circ\cdot n=360^\circ\), откуда \(n=5\).

 

2 способ.
Так как многоугольник правильный, его угол равен \(108^\circ\), а сумма всех углов правильного многоугольника равна \(180^\circ\cdot (n-2)\), где \(n\) – число вершин, то \[108^\circ\cdot n=180^\circ(n-2)\quad\Rightarrow\quad n=5\] В таком случае информацию о том, что многоугольник вписан в окружность, мы не использовали.

Ответ: 5

Задание 33 #6078

В четырёхугольнике \(ABCD\): диагонали \(AC\) и \(BD\) пересекаются в точке \(M\), \(\angle ABC + \angle ADC = 180^{\circ}\). Найдите отношение углов \(CBD\) и \(CAD\).

Если в выпуклом четырёхугольнике сумма противоположных углов равна \(180^{\circ}\), то около него можно описать окружность, тогда около \(ABCD\) можно описать окружность.



\(\angle CBD\) и \(\angle CAD\) – вписанные, опирающиеся на одну дугу, тогда они равны и их отношение равно 1.

Ответ: 1

Задание 34 #6079

Треугольники \(ABC\) и \(ADC\) имеют общее основание, \(\angle ABC = \angle ADC\), \(M\) – точка пересечения \(AD\) и \(BC\), \(AM = 10\), \(MD = 6\), \(BM = 8\). Найдите \(MC\).

Так как \(\angle ABC = \angle ADC\), то около четырёхугольника \(ABDC\) можно описать окружность. Покажем это:



\(\angle AMB\) и \(\angle DMC\) – вертикальные, тогда \(\angle AMB = \angle DMC\); \(\angle ABC = \angle ADC\), тогда треугольники \(ABM\) и \(DMC\) – подобны по двум углам, откуда получаем: \[\dfrac{AM}{MC} = \dfrac{BM}{MD},\] но углы \(BMD\) и \(AMC\) также вертикальные, тогда \(\angle BMD = \angle AMC\) и треугольники \(BMD\) и \(AMC\) – подобны, так как если угол одного треугольника равен углу другого треугольника, а стороны, образующие этот угол в одном треугольнике, пропорциональны соответствующим сторонам другого, то такие треугольники подобны.

 

Из подобия получаем: \(\angle CBD = \angle CAD\), \(\angle MCD = BAM\), тогда \(\angle ABC + \angle CBD + \angle ACB + \angle BCD = \angle ABC + \angle CAD + \angle ACB + \angle BAM = 180^{\circ}\), так как это сумма углов треугольника \(ABC\).

Если в выпуклом четырёхугольнике сумма противоположных углов равна \(180^{\circ}\), то около него можно описать окружность, тогда около \(ABDC\) можно описать окружность.

Так как произведение отрезков одной из пересекающихся хорд равно произведению отрезков другой, то \(AM \cdot MD = BM \cdot MC\), то есть \(60 = 8\cdot MC\), откуда \(MC = 7,5\).

Ответ: 7,5

Задание 35 #6080

Шестиугольник \(ABCDEF\) вписан в окружность. Найдите \(\angle FAB + \angle BCD + \angle DEF\). Ответ дайте в градусах.

\(\angle FAB\), \(\angle BCD\) и \(\angle DEF\) – вписанные, тогда \(\angle FAB = 0,5\cdot\smile FEDCB\), \(\angle BCD = 0,5\cdot\smile BAFED\), \(\angle DEF = 0,5\cdot\smile FABCD\).


 

Таким образом, \[\begin{aligned} \angle FAB + \angle BCD + \angle DEF &= 0,5\cdot\smile FEDCB + 0,5\cdot \smile BAFED + 0,5\cdot\smile FABCD =\\ &= 0,5(\smile FEDCB + \smile BAFED + \smile FABCD) = 0,5\cdot 2l = l, \end{aligned}\] где \(l\) – градусная мера окружности.

Так как \(l = 360^\circ\), то \(\angle FAB + \angle BCD + \angle DEF = 360^\circ\).

Ответ: 360